Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcom | Structured version Visualization version GIF version |
Description: A commutativity law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2379. Check out sbcom3vv 2103 for a version requiring less axioms. (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 20-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcom | ⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco3 2532 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑥 / 𝑧]𝜑) | |
2 | sbcom3 2525 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑) | |
3 | sbcom3 2525 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) | |
4 | 1, 2, 3 | 3bitr3i 304 | 1 ⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |