MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcom Structured version   Visualization version   GIF version

Theorem sbcom 2509
Description: A commutativity law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2367. Check out sbcom3vv 2091 for a version requiring fewer axioms. (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 20-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
sbcom ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)

Proof of Theorem sbcom
StepHypRef Expression
1 sbco3 2508 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑥 / 𝑧]𝜑)
2 sbcom3 2501 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)
3 sbcom3 2501 . 2 ([𝑦 / 𝑥][𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
41, 2, 33bitr3i 301 1 ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator