MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtr Structured version   Visualization version   GIF version

Theorem sbtr 2524
Description: A partial converse to sbt 2066. If the substitution of a variable for a nonfree one in a wff gives a theorem, then the original wff is a theorem. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by BJ, 15-Sep-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbtr.nf 𝑦𝜑
sbtr.1 [𝑦 / 𝑥]𝜑
Assertion
Ref Expression
sbtr 𝜑

Proof of Theorem sbtr
StepHypRef Expression
1 sbtr.nf . . 3 𝑦𝜑
21sbtrt 2523 . 2 (∀𝑦[𝑦 / 𝑥]𝜑𝜑)
3 sbtr.1 . 2 [𝑦 / 𝑥]𝜑
42, 3mpg 1795 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator