Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteq Structured version   Visualization version   GIF version

Theorem scotteq 44209
Description: Closed form of scotteqd 44208. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Assertion
Ref Expression
scotteq (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)

Proof of Theorem scotteq
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21scotteqd 44208 1 (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Scott cscott 44206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-scott 44207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator