Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteq Structured version   Visualization version   GIF version

Theorem scotteq 42987
Description: Closed form of scotteqd 42986. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Assertion
Ref Expression
scotteq (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)

Proof of Theorem scotteq
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21scotteqd 42986 1 (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Scott cscott 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-scott 42985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator