Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteq Structured version   Visualization version   GIF version

Theorem scotteq 44220
Description: Closed form of scotteqd 44219. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Assertion
Ref Expression
scotteq (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)

Proof of Theorem scotteq
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21scotteqd 44219 1 (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Scott cscott 44217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-scott 44218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator