Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem1 | Structured version Visualization version GIF version |
Description: Lemma for sepnsepo 46105. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem1 | ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1093 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | 2rexbii 3178 | . 2 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | r19.42v 3276 | . . 3 ⊢ (∃𝑦 ∈ 𝐽 (𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) | |
4 | 3 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) |
5 | 2, 4 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1784 df-rex 3069 |
This theorem is referenced by: sepnsepo 46105 |
Copyright terms: Public domain | W3C validator |