Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepolem1 Structured version   Visualization version   GIF version

Theorem sepnsepolem1 46215
Description: Lemma for sepnsepo 46217. (Contributed by Zhi Wang, 1-Sep-2024.)
Assertion
Ref Expression
sepnsepolem1 (∃𝑥𝐽𝑦𝐽 (𝜑𝜓𝜒) ↔ ∃𝑥𝐽 (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem sepnsepolem1
StepHypRef Expression
1 3anass 1094 . . 3 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
212rexbii 3182 . 2 (∃𝑥𝐽𝑦𝐽 (𝜑𝜓𝜒) ↔ ∃𝑥𝐽𝑦𝐽 (𝜑 ∧ (𝜓𝜒)))
3 r19.42v 3279 . . 3 (∃𝑦𝐽 (𝜑 ∧ (𝜓𝜒)) ↔ (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
43rexbii 3181 . 2 (∃𝑥𝐽𝑦𝐽 (𝜑 ∧ (𝜓𝜒)) ↔ ∃𝑥𝐽 (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
52, 4bitri 274 1 (∃𝑥𝐽𝑦𝐽 (𝜑𝜓𝜒) ↔ ∃𝑥𝐽 (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-rex 3070
This theorem is referenced by:  sepnsepo  46217
  Copyright terms: Public domain W3C validator