Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  io1ii Structured version   Visualization version   GIF version

Theorem io1ii 49045
Description: (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
io1ii (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)

Proof of Theorem io1ii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0xr 11166 . . . . . . . . . . 11 0 ∈ ℝ*
2 lerelxr 11182 . . . . . . . . . . . . 13 ≤ ⊆ (ℝ* × ℝ*)
32brel 5684 . . . . . . . . . . . 12 (0 ≤ 𝐴 → (0 ∈ ℝ*𝐴 ∈ ℝ*))
43simprd 495 . . . . . . . . . . 11 (0 ≤ 𝐴𝐴 ∈ ℝ*)
5 rexr 11165 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
6 xrlelttr 13057 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 < 𝑥))
7 xrltle 13050 . . . . . . . . . . . . 13 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
873adant2 1131 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
96, 8syld 47 . . . . . . . . . . 11 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
101, 4, 5, 9mp3an3an 1469 . . . . . . . . . 10 ((0 ≤ 𝐴𝑥 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
1110imp 406 . . . . . . . . 9 (((0 ≤ 𝐴𝑥 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝑥)) → 0 ≤ 𝑥)
12113impdi 1351 . . . . . . . 8 ((0 ≤ 𝐴𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥)
13123expib 1122 . . . . . . 7 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥))
1413pm4.71d 561 . . . . . 6 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥)))
1514anbi1d 631 . . . . 5 (0 ≤ 𝐴 → (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1)))
16 df-3an 1088 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1))
17 3anass 1094 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
1817anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
19 anandi 676 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
20 anass 468 . . . . . . 7 ((((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
21 anass 468 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2220, 21bitr2i 276 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2318, 19, 223bitr2i 299 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2415, 16, 233bitr4g 314 . . . 4 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
25 1re 11119 . . . . 5 1 ∈ ℝ
26 elioc2 13311 . . . . 5 ((𝐴 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
274, 25, 26sylancl 586 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
28 elin 3914 . . . . . 6 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)))
29 elicc01 13368 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3029anbi2i 623 . . . . . 6 ((𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3128, 30bitri 275 . . . . 5 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
32 elioopnf 13345 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
334, 32syl 17 . . . . . 6 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
3433anbi1d 631 . . . . 5 (0 ≤ 𝐴 → ((𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3531, 34bitrid 283 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3624, 27, 353bitr4rd 312 . . 3 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ 𝑥 ∈ (𝐴(,]1)))
3736eqrdv 2731 . 2 (0 ≤ 𝐴 → ((𝐴(,)+∞) ∩ (0[,]1)) = (𝐴(,]1))
38 fvex 6841 . . . 4 (topGen‘ran (,)) ∈ V
39 ovex 7385 . . . 4 (0[,]1) ∈ V
40 iooretop 24681 . . . 4 (𝐴(,)+∞) ∈ (topGen‘ran (,))
41 elrestr 17334 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4238, 39, 40, 41mp3an 1463 . . 3 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
43 dfii2 24803 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4442, 43eleqtrri 2832 . 2 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ II
4537, 44eqeltrrdi 2842 1 (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  Vcvv 3437  cin 3897   class class class wbr 5093  ran crn 5620  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154  (,)cioo 13247  (,]cioc 13248  [,]cicc 13250  t crest 17326  topGenctg 17343  IIcii 24796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-icc 13254  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-rest 17328  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-ii 24798
This theorem is referenced by:  sepfsepc  49052
  Copyright terms: Public domain W3C validator