Step | Hyp | Ref
| Expression |
1 | | 0xr 11022 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
2 | | lerelxr 11038 |
. . . . . . . . . . . . 13
⊢ ≤
⊆ (ℝ* × ℝ*) |
3 | 2 | brel 5652 |
. . . . . . . . . . . 12
⊢ (0 ≤
𝐴 → (0 ∈
ℝ* ∧ 𝐴
∈ ℝ*)) |
4 | 3 | simprd 496 |
. . . . . . . . . . 11
⊢ (0 ≤
𝐴 → 𝐴 ∈
ℝ*) |
5 | | rexr 11021 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
6 | | xrlelttr 12890 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ ((0 ≤ 𝐴 ∧
𝐴 < 𝑥) → 0 < 𝑥)) |
7 | | xrltle 12883 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (0 <
𝑥 → 0 ≤ 𝑥)) |
8 | 7 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ (0 < 𝑥 → 0
≤ 𝑥)) |
9 | 6, 8 | syld 47 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ ((0 ≤ 𝐴 ∧
𝐴 < 𝑥) → 0 ≤ 𝑥)) |
10 | 1, 4, 5, 9 | mp3an3an 1466 |
. . . . . . . . . 10
⊢ ((0 ≤
𝐴 ∧ 𝑥 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥)) |
11 | 10 | imp 407 |
. . . . . . . . 9
⊢ (((0 ≤
𝐴 ∧ 𝑥 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑥)) → 0 ≤ 𝑥) |
12 | 11 | 3impdi 1349 |
. . . . . . . 8
⊢ ((0 ≤
𝐴 ∧ 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥) |
13 | 12 | 3expib 1121 |
. . . . . . 7
⊢ (0 ≤
𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥)) |
14 | 13 | pm4.71d 562 |
. . . . . 6
⊢ (0 ≤
𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥))) |
15 | 14 | anbi1d 630 |
. . . . 5
⊢ (0 ≤
𝐴 → (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))) |
16 | | df-3an 1088 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1)) |
17 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥 ∧ 𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) |
18 | 17 | anbi2i 623 |
. . . . . 6
⊢ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
19 | | anandi 673 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
20 | | anass 469 |
. . . . . . 7
⊢ ((((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) |
21 | | anass 469 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
22 | 20, 21 | bitr2i 275 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1)) |
23 | 18, 19, 22 | 3bitr2i 299 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1)) |
24 | 15, 16, 23 | 3bitr4g 314 |
. . . 4
⊢ (0 ≤
𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
25 | | 1re 10975 |
. . . . 5
⊢ 1 ∈
ℝ |
26 | | elioc2 13142 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 1 ∈ ℝ) → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1))) |
27 | 4, 25, 26 | sylancl 586 |
. . . 4
⊢ (0 ≤
𝐴 → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1))) |
28 | | elin 3903 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1))) |
29 | | elicc01 13198 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥 ∧ 𝑥 ≤ 1)) |
30 | 29 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) |
31 | 28, 30 | bitri 274 |
. . . . 5
⊢ (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1))) |
32 | | elioopnf 13175 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
33 | 4, 32 | syl 17 |
. . . . . 6
⊢ (0 ≤
𝐴 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
34 | 33 | anbi1d 630 |
. . . . 5
⊢ (0 ≤
𝐴 → ((𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
35 | 31, 34 | syl5bb 283 |
. . . 4
⊢ (0 ≤
𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1)))) |
36 | 24, 27, 35 | 3bitr4rd 312 |
. . 3
⊢ (0 ≤
𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ 𝑥 ∈ (𝐴(,]1))) |
37 | 36 | eqrdv 2736 |
. 2
⊢ (0 ≤
𝐴 → ((𝐴(,)+∞) ∩ (0[,]1)) =
(𝐴(,]1)) |
38 | | fvex 6787 |
. . . 4
⊢
(topGen‘ran (,)) ∈ V |
39 | | ovex 7308 |
. . . 4
⊢ (0[,]1)
∈ V |
40 | | iooretop 23929 |
. . . 4
⊢ (𝐴(,)+∞) ∈
(topGen‘ran (,)) |
41 | | elrestr 17139 |
. . . 4
⊢
(((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (𝐴(,)+∞) ∈
(topGen‘ran (,))) → ((𝐴(,)+∞) ∩ (0[,]1)) ∈
((topGen‘ran (,)) ↾t (0[,]1))) |
42 | 38, 39, 40, 41 | mp3an 1460 |
. . 3
⊢ ((𝐴(,)+∞) ∩ (0[,]1))
∈ ((topGen‘ran (,)) ↾t (0[,]1)) |
43 | | dfii2 24045 |
. . 3
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
44 | 42, 43 | eleqtrri 2838 |
. 2
⊢ ((𝐴(,)+∞) ∩ (0[,]1))
∈ II |
45 | 37, 44 | eqeltrrdi 2848 |
1
⊢ (0 ≤
𝐴 → (𝐴(,]1) ∈ II) |