Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  io1ii Structured version   Visualization version   GIF version

Theorem io1ii 48913
Description: (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
io1ii (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)

Proof of Theorem io1ii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0xr 11228 . . . . . . . . . . 11 0 ∈ ℝ*
2 lerelxr 11244 . . . . . . . . . . . . 13 ≤ ⊆ (ℝ* × ℝ*)
32brel 5706 . . . . . . . . . . . 12 (0 ≤ 𝐴 → (0 ∈ ℝ*𝐴 ∈ ℝ*))
43simprd 495 . . . . . . . . . . 11 (0 ≤ 𝐴𝐴 ∈ ℝ*)
5 rexr 11227 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
6 xrlelttr 13123 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 < 𝑥))
7 xrltle 13116 . . . . . . . . . . . . 13 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
873adant2 1131 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
96, 8syld 47 . . . . . . . . . . 11 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
101, 4, 5, 9mp3an3an 1469 . . . . . . . . . 10 ((0 ≤ 𝐴𝑥 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
1110imp 406 . . . . . . . . 9 (((0 ≤ 𝐴𝑥 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝑥)) → 0 ≤ 𝑥)
12113impdi 1351 . . . . . . . 8 ((0 ≤ 𝐴𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥)
13123expib 1122 . . . . . . 7 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥))
1413pm4.71d 561 . . . . . 6 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥)))
1514anbi1d 631 . . . . 5 (0 ≤ 𝐴 → (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1)))
16 df-3an 1088 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1))
17 3anass 1094 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
1817anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
19 anandi 676 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
20 anass 468 . . . . . . 7 ((((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
21 anass 468 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2220, 21bitr2i 276 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2318, 19, 223bitr2i 299 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2415, 16, 233bitr4g 314 . . . 4 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
25 1re 11181 . . . . 5 1 ∈ ℝ
26 elioc2 13377 . . . . 5 ((𝐴 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
274, 25, 26sylancl 586 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
28 elin 3933 . . . . . 6 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)))
29 elicc01 13434 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3029anbi2i 623 . . . . . 6 ((𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3128, 30bitri 275 . . . . 5 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
32 elioopnf 13411 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
334, 32syl 17 . . . . . 6 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
3433anbi1d 631 . . . . 5 (0 ≤ 𝐴 → ((𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3531, 34bitrid 283 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3624, 27, 353bitr4rd 312 . . 3 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ 𝑥 ∈ (𝐴(,]1)))
3736eqrdv 2728 . 2 (0 ≤ 𝐴 → ((𝐴(,)+∞) ∩ (0[,]1)) = (𝐴(,]1))
38 fvex 6874 . . . 4 (topGen‘ran (,)) ∈ V
39 ovex 7423 . . . 4 (0[,]1) ∈ V
40 iooretop 24660 . . . 4 (𝐴(,)+∞) ∈ (topGen‘ran (,))
41 elrestr 17398 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4238, 39, 40, 41mp3an 1463 . . 3 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
43 dfii2 24782 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4442, 43eleqtrri 2828 . 2 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ II
4537, 44eqeltrrdi 2838 1 (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  Vcvv 3450  cin 3916   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  (,]cioc 13314  [,]cicc 13316  t crest 17390  topGenctg 17407  IIcii 24775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-ii 24777
This theorem is referenced by:  sepfsepc  48920
  Copyright terms: Public domain W3C validator