Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  io1ii Structured version   Visualization version   GIF version

Theorem io1ii 46214
Description: (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
io1ii (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)

Proof of Theorem io1ii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0xr 11022 . . . . . . . . . . 11 0 ∈ ℝ*
2 lerelxr 11038 . . . . . . . . . . . . 13 ≤ ⊆ (ℝ* × ℝ*)
32brel 5652 . . . . . . . . . . . 12 (0 ≤ 𝐴 → (0 ∈ ℝ*𝐴 ∈ ℝ*))
43simprd 496 . . . . . . . . . . 11 (0 ≤ 𝐴𝐴 ∈ ℝ*)
5 rexr 11021 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
6 xrlelttr 12890 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 < 𝑥))
7 xrltle 12883 . . . . . . . . . . . . 13 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
873adant2 1130 . . . . . . . . . . . 12 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (0 < 𝑥 → 0 ≤ 𝑥))
96, 8syld 47 . . . . . . . . . . 11 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
101, 4, 5, 9mp3an3an 1466 . . . . . . . . . 10 ((0 ≤ 𝐴𝑥 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝑥) → 0 ≤ 𝑥))
1110imp 407 . . . . . . . . 9 (((0 ≤ 𝐴𝑥 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝑥)) → 0 ≤ 𝑥)
12113impdi 1349 . . . . . . . 8 ((0 ≤ 𝐴𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥)
13123expib 1121 . . . . . . 7 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 0 ≤ 𝑥))
1413pm4.71d 562 . . . . . 6 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥)))
1514anbi1d 630 . . . . 5 (0 ≤ 𝐴 → (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1)))
16 df-3an 1088 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 ≤ 1))
17 3anass 1094 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
1817anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
19 anandi 673 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
20 anass 469 . . . . . . 7 ((((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
21 anass 469 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2220, 21bitr2i 275 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐴 < 𝑥 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2318, 19, 223bitr2i 299 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 0 ≤ 𝑥) ∧ 𝑥 ≤ 1))
2415, 16, 233bitr4g 314 . . . 4 (0 ≤ 𝐴 → ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
25 1re 10975 . . . . 5 1 ∈ ℝ
26 elioc2 13142 . . . . 5 ((𝐴 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
274, 25, 26sylancl 586 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,]1) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ 1)))
28 elin 3903 . . . . . 6 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)))
29 elicc01 13198 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3029anbi2i 623 . . . . . 6 ((𝑥 ∈ (𝐴(,)+∞) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3128, 30bitri 274 . . . . 5 (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ (𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
32 elioopnf 13175 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
334, 32syl 17 . . . . . 6 (0 ≤ 𝐴 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
3433anbi1d 630 . . . . 5 (0 ≤ 𝐴 → ((𝑥 ∈ (𝐴(,)+∞) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3531, 34syl5bb 283 . . . 4 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3624, 27, 353bitr4rd 312 . . 3 (0 ≤ 𝐴 → (𝑥 ∈ ((𝐴(,)+∞) ∩ (0[,]1)) ↔ 𝑥 ∈ (𝐴(,]1)))
3736eqrdv 2736 . 2 (0 ≤ 𝐴 → ((𝐴(,)+∞) ∩ (0[,]1)) = (𝐴(,]1))
38 fvex 6787 . . . 4 (topGen‘ran (,)) ∈ V
39 ovex 7308 . . . 4 (0[,]1) ∈ V
40 iooretop 23929 . . . 4 (𝐴(,)+∞) ∈ (topGen‘ran (,))
41 elrestr 17139 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4238, 39, 40, 41mp3an 1460 . . 3 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
43 dfii2 24045 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4442, 43eleqtrri 2838 . 2 ((𝐴(,)+∞) ∩ (0[,]1)) ∈ II
4537, 44eqeltrrdi 2848 1 (0 ≤ 𝐴 → (𝐴(,]1) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  Vcvv 3432  cin 3886   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079  (,]cioc 13080  [,]cicc 13082  t crest 17131  topGenctg 17148  IIcii 24038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-icc 13086  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-ii 24040
This theorem is referenced by:  sepfsepc  46221
  Copyright terms: Public domain W3C validator