![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem2 | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48257. Proof could be shortened by 1 step using ssdisjdr 48194. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepolem2 | ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | sslin 4236 | . . . . 5 ⊢ (𝑧 ⊆ 𝑦 → (𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦)) | |
4 | sseq0 4404 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑧) = ∅) | |
5 | 4 | ex 411 | . . . . 5 ⊢ ((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑧 ⊆ 𝑦 → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
7 | 6 | adantl 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
8 | ineq2 4207 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝑧)) | |
9 | 8 | eqeq1d 2728 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
10 | 9 | adantl 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
11 | 2, 7, 10 | opnneieqv 48244 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
12 | 1, 11 | syl 17 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 ‘cfv 6554 Topctop 22886 neicnei 23092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-top 22887 df-nei 23093 |
This theorem is referenced by: sepnsepo 48257 |
Copyright terms: Public domain | W3C validator |