Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepolem2 Structured version   Visualization version   GIF version

Theorem sepnsepolem2 46104
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 46105. Proof could be shortened by 1 step using ssdisjdr 46042. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepolem2 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥)   𝐽(𝑥)

Proof of Theorem sepnsepolem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . 3 (𝐽 ∈ Top → 𝐽 ∈ Top)
3 sslin 4165 . . . . 5 (𝑧𝑦 → (𝑥𝑧) ⊆ (𝑥𝑦))
4 sseq0 4330 . . . . . 6 (((𝑥𝑧) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑥𝑧) = ∅)
54ex 412 . . . . 5 ((𝑥𝑧) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
63, 5syl 17 . . . 4 (𝑧𝑦 → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
76adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑧𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
8 ineq2 4137 . . . . 5 (𝑦 = 𝑧 → (𝑥𝑦) = (𝑥𝑧))
98eqeq1d 2740 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
109adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
112, 7, 10opnneieqv 46092 . 2 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
121, 11syl 17 1 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  c0 4253  cfv 6418  Topctop 21950  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-nei 22157
This theorem is referenced by:  sepnsepo  46105
  Copyright terms: Public domain W3C validator