| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem2 | Structured version Visualization version GIF version | ||
| Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 49034. Proof could be shortened by 1 step using ssdisjdr 48919. (Contributed by Zhi Wang, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| Ref | Expression |
|---|---|
| sepnsepolem2 | ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | id 22 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
| 3 | sslin 4190 | . . . . 5 ⊢ (𝑧 ⊆ 𝑦 → (𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦)) | |
| 4 | sseq0 4350 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑧) = ∅) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ ((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑧 ⊆ 𝑦 → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
| 8 | ineq2 4161 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝑧)) | |
| 9 | 8 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
| 11 | 2, 7, 10 | opnneieqv 49021 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| 12 | 1, 11 | syl 17 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 Topctop 22808 neicnei 23012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-nei 23013 |
| This theorem is referenced by: sepnsepo 49034 |
| Copyright terms: Public domain | W3C validator |