Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem2 | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 46217. Proof could be shortened by 1 step using ssdisjdr 46154. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepolem2 | ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | sslin 4168 | . . . . 5 ⊢ (𝑧 ⊆ 𝑦 → (𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦)) | |
4 | sseq0 4333 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑧) = ∅) | |
5 | 4 | ex 413 | . . . . 5 ⊢ ((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑧 ⊆ 𝑦 → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
8 | ineq2 4140 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝑧)) | |
9 | 8 | eqeq1d 2740 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
11 | 2, 7, 10 | opnneieqv 46204 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
12 | 1, 11 | syl 17 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 Topctop 22042 neicnei 22248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-nei 22249 |
This theorem is referenced by: sepnsepo 46217 |
Copyright terms: Public domain | W3C validator |