![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem2 | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 47509. Proof could be shortened by 1 step using ssdisjdr 47446. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | β’ (π β π½ β Top) |
Ref | Expression |
---|---|
sepnsepolem2 | β’ (π β (βπ¦ β ((neiβπ½)βπ·)(π₯ β© π¦) = β β βπ¦ β π½ (π· β π¦ β§ (π₯ β© π¦) = β ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 β’ (π β π½ β Top) | |
2 | id 22 | . . 3 β’ (π½ β Top β π½ β Top) | |
3 | sslin 4233 | . . . . 5 β’ (π§ β π¦ β (π₯ β© π§) β (π₯ β© π¦)) | |
4 | sseq0 4398 | . . . . . 6 β’ (((π₯ β© π§) β (π₯ β© π¦) β§ (π₯ β© π¦) = β ) β (π₯ β© π§) = β ) | |
5 | 4 | ex 413 | . . . . 5 β’ ((π₯ β© π§) β (π₯ β© π¦) β ((π₯ β© π¦) = β β (π₯ β© π§) = β )) |
6 | 3, 5 | syl 17 | . . . 4 β’ (π§ β π¦ β ((π₯ β© π¦) = β β (π₯ β© π§) = β )) |
7 | 6 | adantl 482 | . . 3 β’ ((π½ β Top β§ π§ β π¦) β ((π₯ β© π¦) = β β (π₯ β© π§) = β )) |
8 | ineq2 4205 | . . . . 5 β’ (π¦ = π§ β (π₯ β© π¦) = (π₯ β© π§)) | |
9 | 8 | eqeq1d 2734 | . . . 4 β’ (π¦ = π§ β ((π₯ β© π¦) = β β (π₯ β© π§) = β )) |
10 | 9 | adantl 482 | . . 3 β’ ((π½ β Top β§ π¦ = π§) β ((π₯ β© π¦) = β β (π₯ β© π§) = β )) |
11 | 2, 7, 10 | opnneieqv 47496 | . 2 β’ (π½ β Top β (βπ¦ β ((neiβπ½)βπ·)(π₯ β© π¦) = β β βπ¦ β π½ (π· β π¦ β§ (π₯ β© π¦) = β ))) |
12 | 1, 11 | syl 17 | 1 β’ (π β (βπ¦ β ((neiβπ½)βπ·)(π₯ β© π¦) = β β βπ¦ β π½ (π· β π¦ β§ (π₯ β© π¦) = β ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β© cin 3946 β wss 3947 β c0 4321 βcfv 6540 Topctop 22386 neicnei 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-nei 22593 |
This theorem is referenced by: sepnsepo 47509 |
Copyright terms: Public domain | W3C validator |