Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepolem2 | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 46105. Proof could be shortened by 1 step using ssdisjdr 46042. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepolem2 | ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | sslin 4165 | . . . . 5 ⊢ (𝑧 ⊆ 𝑦 → (𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦)) | |
4 | sseq0 4330 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑧) = ∅) | |
5 | 4 | ex 412 | . . . . 5 ⊢ ((𝑥 ∩ 𝑧) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑧 ⊆ 𝑦 → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑧) = ∅)) |
8 | ineq2 4137 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝑧)) | |
9 | 8 | eqeq1d 2740 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑥 ∩ 𝑧) = ∅)) |
11 | 2, 7, 10 | opnneieqv 46092 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
12 | 1, 11 | syl 17 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 Topctop 21950 neicnei 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-nei 22157 |
This theorem is referenced by: sepnsepo 46105 |
Copyright terms: Public domain | W3C validator |