Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepolem2 Structured version   Visualization version   GIF version

Theorem sepnsepolem2 48256
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48257. Proof could be shortened by 1 step using ssdisjdr 48194. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepolem2 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥)   𝐽(𝑥)

Proof of Theorem sepnsepolem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . 3 (𝐽 ∈ Top → 𝐽 ∈ Top)
3 sslin 4236 . . . . 5 (𝑧𝑦 → (𝑥𝑧) ⊆ (𝑥𝑦))
4 sseq0 4404 . . . . . 6 (((𝑥𝑧) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑥𝑧) = ∅)
54ex 411 . . . . 5 ((𝑥𝑧) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
63, 5syl 17 . . . 4 (𝑧𝑦 → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
76adantl 480 . . 3 ((𝐽 ∈ Top ∧ 𝑧𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
8 ineq2 4207 . . . . 5 (𝑦 = 𝑧 → (𝑥𝑦) = (𝑥𝑧))
98eqeq1d 2728 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
109adantl 480 . . 3 ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
112, 7, 10opnneieqv 48244 . 2 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
121, 11syl 17 1 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060  cin 3946  wss 3947  c0 4325  cfv 6554  Topctop 22886  neicnei 23092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-top 22887  df-nei 23093
This theorem is referenced by:  sepnsepo  48257
  Copyright terms: Public domain W3C validator