Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepolem2 Structured version   Visualization version   GIF version

Theorem sepnsepolem2 48521
Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48522. Proof could be shortened by 1 step using ssdisjdr 48459. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepolem2 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥)   𝐽(𝑥)

Proof of Theorem sepnsepolem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . 3 (𝐽 ∈ Top → 𝐽 ∈ Top)
3 sslin 4258 . . . . 5 (𝑧𝑦 → (𝑥𝑧) ⊆ (𝑥𝑦))
4 sseq0 4422 . . . . . 6 (((𝑥𝑧) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑥𝑧) = ∅)
54ex 412 . . . . 5 ((𝑥𝑧) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
63, 5syl 17 . . . 4 (𝑧𝑦 → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
76adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑧𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑧) = ∅))
8 ineq2 4229 . . . . 5 (𝑦 = 𝑧 → (𝑥𝑦) = (𝑥𝑧))
98eqeq1d 2736 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
109adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑦 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑥𝑧) = ∅))
112, 7, 10opnneieqv 48509 . 2 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
121, 11syl 17 1 (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  wrex 3072  cin 3969  wss 3970  c0 4347  cfv 6572  Topctop 22913  neicnei 23119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-top 22914  df-nei 23120
This theorem is referenced by:  sepnsepo  48522
  Copyright terms: Public domain W3C validator