Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepo Structured version   Visualization version   GIF version

Theorem sepnsepo 48908
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepo (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽,𝑥   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sepnsepo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ Top)
32sepnsepolem2 48907 . . . . 5 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
43anbi2d 630 . . . 4 (𝐽 ∈ Top → ((𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
54rexbidv 3153 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
6 ssrin 4193 . . . . . . 7 (𝑧𝑥 → (𝑧𝑦) ⊆ (𝑥𝑦))
7 sseq0 4354 . . . . . . . 8 (((𝑧𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑧𝑦) = ∅)
87ex 412 . . . . . . 7 ((𝑧𝑦) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
96, 8syl 17 . . . . . 6 (𝑧𝑥 → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
109adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑧𝑥) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
1110reximdv 3144 . . . 4 ((𝐽 ∈ Top ∧ 𝑧𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
12 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1312ineq1d 4170 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥𝑦) = (𝑧𝑦))
1413eqeq1d 2731 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑧𝑦) = ∅))
1514rexbidv 3153 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
162, 11, 15opnneieqv 48895 . . 3 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅)))
17 sepnsepolem1 48906 . . . 4 (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
1817a1i 11 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
195, 16, 183bitr4d 311 . 2 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
201, 19syl 17 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903  c0 4284  cfv 6482  Topctop 22778  neicnei 22982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-top 22779  df-nei 22983
This theorem is referenced by:  sepcsepo  48911  isnrm4  48915  iscnrm4  48938
  Copyright terms: Public domain W3C validator