Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepo Structured version   Visualization version   GIF version

Theorem sepnsepo 46105
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepo (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽,𝑥   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sepnsepo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ Top)
32sepnsepolem2 46104 . . . . 5 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
43anbi2d 628 . . . 4 (𝐽 ∈ Top → ((𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
54rexbidv 3225 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
6 ssrin 4164 . . . . . . 7 (𝑧𝑥 → (𝑧𝑦) ⊆ (𝑥𝑦))
7 sseq0 4330 . . . . . . . 8 (((𝑧𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑧𝑦) = ∅)
87ex 412 . . . . . . 7 ((𝑧𝑦) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
96, 8syl 17 . . . . . 6 (𝑧𝑥 → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
109adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑧𝑥) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
1110reximdv 3201 . . . 4 ((𝐽 ∈ Top ∧ 𝑧𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
12 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1312ineq1d 4142 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥𝑦) = (𝑧𝑦))
1413eqeq1d 2740 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑧𝑦) = ∅))
1514rexbidv 3225 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
162, 11, 15opnneieqv 46092 . . 3 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅)))
17 sepnsepolem1 46103 . . . 4 (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
1817a1i 11 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
195, 16, 183bitr4d 310 . 2 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
201, 19syl 17 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  c0 4253  cfv 6418  Topctop 21950  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-nei 22157
This theorem is referenced by:  sepcsepo  46108  isnrm4  46112  iscnrm4  46136
  Copyright terms: Public domain W3C validator