![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepo | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepo | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | 2 | sepnsepolem2 48521 | . . . . 5 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
4 | 3 | anbi2d 629 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
5 | 4 | rexbidv 3181 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
6 | ssrin 4257 | . . . . . . 7 ⊢ (𝑧 ⊆ 𝑥 → (𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) | |
7 | sseq0 4422 | . . . . . . . 8 ⊢ (((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑧 ∩ 𝑦) = ∅) | |
8 | 7 | ex 412 | . . . . . . 7 ⊢ ((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝑧 ⊆ 𝑥 → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
11 | 10 | reximdv 3172 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
13 | 12 | ineq1d 4234 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥 ∩ 𝑦) = (𝑧 ∩ 𝑦)) |
14 | 13 | eqeq1d 2736 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑧 ∩ 𝑦) = ∅)) |
15 | 14 | rexbidv 3181 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
16 | 2, 11, 15 | opnneieqv 48509 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅))) |
17 | sepnsepolem1 48520 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
19 | 5, 16, 18 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 ∩ cin 3969 ⊆ wss 3970 ∅c0 4347 ‘cfv 6572 Topctop 22913 neicnei 23119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-top 22914 df-nei 23120 |
This theorem is referenced by: sepcsepo 48525 isnrm4 48529 iscnrm4 48553 |
Copyright terms: Public domain | W3C validator |