Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepo | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepo | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | 2 | sepnsepolem2 46216 | . . . . 5 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
4 | 3 | anbi2d 629 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
5 | 4 | rexbidv 3226 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
6 | ssrin 4167 | . . . . . . 7 ⊢ (𝑧 ⊆ 𝑥 → (𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) | |
7 | sseq0 4333 | . . . . . . . 8 ⊢ (((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑧 ∩ 𝑦) = ∅) | |
8 | 7 | ex 413 | . . . . . . 7 ⊢ ((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝑧 ⊆ 𝑥 → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
11 | 10 | reximdv 3202 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
12 | simpr 485 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
13 | 12 | ineq1d 4145 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥 ∩ 𝑦) = (𝑧 ∩ 𝑦)) |
14 | 13 | eqeq1d 2740 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑧 ∩ 𝑦) = ∅)) |
15 | 14 | rexbidv 3226 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
16 | 2, 11, 15 | opnneieqv 46204 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅))) |
17 | sepnsepolem1 46215 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
19 | 5, 16, 18 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 Topctop 22042 neicnei 22248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-nei 22249 |
This theorem is referenced by: sepcsepo 46220 isnrm4 46224 iscnrm4 46248 |
Copyright terms: Public domain | W3C validator |