Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepo Structured version   Visualization version   GIF version

Theorem sepnsepo 46217
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (𝜑𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepo (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽,𝑥   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sepnsepo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (𝜑𝐽 ∈ Top)
2 id 22 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ Top)
32sepnsepolem2 46216 . . . . 5 (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
43anbi2d 629 . . . 4 (𝐽 ∈ Top → ((𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
54rexbidv 3226 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
6 ssrin 4167 . . . . . . 7 (𝑧𝑥 → (𝑧𝑦) ⊆ (𝑥𝑦))
7 sseq0 4333 . . . . . . . 8 (((𝑧𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) = ∅) → (𝑧𝑦) = ∅)
87ex 413 . . . . . . 7 ((𝑧𝑦) ⊆ (𝑥𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
96, 8syl 17 . . . . . 6 (𝑧𝑥 → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
109adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑧𝑥) → ((𝑥𝑦) = ∅ → (𝑧𝑦) = ∅))
1110reximdv 3202 . . . 4 ((𝐽 ∈ Top ∧ 𝑧𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
12 simpr 485 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1312ineq1d 4145 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥𝑦) = (𝑧𝑦))
1413eqeq1d 2740 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥𝑦) = ∅ ↔ (𝑧𝑦) = ∅))
1514rexbidv 3226 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧𝑦) = ∅))
162, 11, 15opnneieqv 46204 . . 3 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅)))
17 sepnsepolem1 46215 . . . 4 (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
1817a1i 11 . . 3 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽 (𝐶𝑥 ∧ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅))))
195, 16, 183bitr4d 311 . 2 (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
201, 19syl 17 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  c0 4256  cfv 6433  Topctop 22042  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-nei 22249
This theorem is referenced by:  sepcsepo  46220  isnrm4  46224  iscnrm4  46248
  Copyright terms: Public domain W3C validator