| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepo | Structured version Visualization version GIF version | ||
| Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| Ref | Expression |
|---|---|
| sepnsepo | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
| 3 | 2 | sepnsepolem2 48884 | . . . . 5 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
| 5 | 4 | rexbidv 3157 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
| 6 | ssrin 4201 | . . . . . . 7 ⊢ (𝑧 ⊆ 𝑥 → (𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) | |
| 7 | sseq0 4362 | . . . . . . . 8 ⊢ (((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑧 ∩ 𝑦) = ∅) | |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ ((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝑧 ⊆ 𝑥 → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
| 11 | 10 | reximdv 3148 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 13 | 12 | ineq1d 4178 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥 ∩ 𝑦) = (𝑧 ∩ 𝑦)) |
| 14 | 13 | eqeq1d 2731 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑧 ∩ 𝑦) = ∅)) |
| 15 | 14 | rexbidv 3157 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
| 16 | 2, 11, 15 | opnneieqv 48872 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅))) |
| 17 | sepnsepolem1 48883 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
| 19 | 5, 16, 18 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ‘cfv 6499 Topctop 22756 neicnei 22960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22757 df-nei 22961 |
| This theorem is referenced by: sepcsepo 48888 isnrm4 48892 iscnrm4 48915 |
| Copyright terms: Public domain | W3C validator |