Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepo Structured version   Visualization version   GIF version

Theorem sepnsepo 48026
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (πœ‘ β†’ 𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepo (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽,π‘₯   π‘₯,𝐢,𝑦   π‘₯,𝐷   π‘₯,𝐽
Allowed substitution hints:   πœ‘(π‘₯,𝑦)

Proof of Theorem sepnsepo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (πœ‘ β†’ 𝐽 ∈ Top)
2 id 22 . . . . . 6 (𝐽 ∈ Top β†’ 𝐽 ∈ Top)
32sepnsepolem2 48025 . . . . 5 (𝐽 ∈ Top β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
43anbi2d 628 . . . 4 (𝐽 ∈ Top β†’ ((𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…) ↔ (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
54rexbidv 3169 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
6 ssrin 4226 . . . . . . 7 (𝑧 βŠ† π‘₯ β†’ (𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦))
7 sseq0 4393 . . . . . . . 8 (((𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦) ∧ (π‘₯ ∩ 𝑦) = βˆ…) β†’ (𝑧 ∩ 𝑦) = βˆ…)
87ex 411 . . . . . . 7 ((𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦) β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
96, 8syl 17 . . . . . 6 (𝑧 βŠ† π‘₯ β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
109adantl 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝑧 βŠ† π‘₯) β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
1110reximdv 3160 . . . 4 ((𝐽 ∈ Top ∧ 𝑧 βŠ† π‘₯) β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… β†’ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(𝑧 ∩ 𝑦) = βˆ…))
12 simpr 483 . . . . . . 7 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ π‘₯ = 𝑧)
1312ineq1d 4203 . . . . . 6 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ (π‘₯ ∩ 𝑦) = (𝑧 ∩ 𝑦))
1413eqeq1d 2727 . . . . 5 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ ((π‘₯ ∩ 𝑦) = βˆ… ↔ (𝑧 ∩ 𝑦) = βˆ…))
1514rexbidv 3169 . . . 4 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(𝑧 ∩ 𝑦) = βˆ…))
162, 11, 15opnneieqv 48013 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…)))
17 sepnsepolem1 48024 . . . 4 (βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
1817a1i 11 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
195, 16, 183bitr4d 310 . 2 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
201, 19syl 17 1 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060   ∩ cin 3938   βŠ† wss 3939  βˆ…c0 4316  β€˜cfv 6541  Topctop 22811  neicnei 23017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-top 22812  df-nei 23018
This theorem is referenced by:  sepcsepo  48029  isnrm4  48033  iscnrm4  48057
  Copyright terms: Public domain W3C validator