![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepnsepo | Structured version Visualization version GIF version |
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
Ref | Expression |
---|---|
sepnsepolem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
Ref | Expression |
---|---|
sepnsepo | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepnsepolem2.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | id 22 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | 2 | sepnsepolem2 47767 | . . . . 5 ⊢ (𝐽 ∈ Top → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
4 | 3 | anbi2d 628 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
5 | 4 | rexbidv 3170 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
6 | ssrin 4226 | . . . . . . 7 ⊢ (𝑧 ⊆ 𝑥 → (𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) | |
7 | sseq0 4392 | . . . . . . . 8 ⊢ (((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑧 ∩ 𝑦) = ∅) | |
8 | 7 | ex 412 | . . . . . . 7 ⊢ ((𝑧 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝑧 ⊆ 𝑥 → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑦) = ∅)) |
11 | 10 | reximdv 3162 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑥) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ → ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
13 | 12 | ineq1d 4204 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (𝑥 ∩ 𝑦) = (𝑧 ∩ 𝑦)) |
14 | 13 | eqeq1d 2726 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → ((𝑥 ∩ 𝑦) = ∅ ↔ (𝑧 ∩ 𝑦) = ∅)) |
15 | 14 | rexbidv 3170 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 = 𝑧) → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑧 ∩ 𝑦) = ∅)) |
16 | 2, 11, 15 | opnneieqv 47755 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅))) |
17 | sepnsepolem1 47766 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
19 | 5, 16, 18 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ Top → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ∩ cin 3940 ⊆ wss 3941 ∅c0 4315 ‘cfv 6534 Topctop 22719 neicnei 22925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-top 22720 df-nei 22926 |
This theorem is referenced by: sepcsepo 47771 isnrm4 47775 iscnrm4 47799 |
Copyright terms: Public domain | W3C validator |