Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepnsepo Structured version   Visualization version   GIF version

Theorem sepnsepo 47509
Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
Hypothesis
Ref Expression
sepnsepolem2.1 (πœ‘ β†’ 𝐽 ∈ Top)
Assertion
Ref Expression
sepnsepo (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐽,π‘₯   π‘₯,𝐢,𝑦   π‘₯,𝐷   π‘₯,𝐽
Allowed substitution hints:   πœ‘(π‘₯,𝑦)

Proof of Theorem sepnsepo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sepnsepolem2.1 . 2 (πœ‘ β†’ 𝐽 ∈ Top)
2 id 22 . . . . . 6 (𝐽 ∈ Top β†’ 𝐽 ∈ Top)
32sepnsepolem2 47508 . . . . 5 (𝐽 ∈ Top β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
43anbi2d 629 . . . 4 (𝐽 ∈ Top β†’ ((𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…) ↔ (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
54rexbidv 3178 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
6 ssrin 4232 . . . . . . 7 (𝑧 βŠ† π‘₯ β†’ (𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦))
7 sseq0 4398 . . . . . . . 8 (((𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦) ∧ (π‘₯ ∩ 𝑦) = βˆ…) β†’ (𝑧 ∩ 𝑦) = βˆ…)
87ex 413 . . . . . . 7 ((𝑧 ∩ 𝑦) βŠ† (π‘₯ ∩ 𝑦) β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
96, 8syl 17 . . . . . 6 (𝑧 βŠ† π‘₯ β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
109adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑧 βŠ† π‘₯) β†’ ((π‘₯ ∩ 𝑦) = βˆ… β†’ (𝑧 ∩ 𝑦) = βˆ…))
1110reximdv 3170 . . . 4 ((𝐽 ∈ Top ∧ 𝑧 βŠ† π‘₯) β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… β†’ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(𝑧 ∩ 𝑦) = βˆ…))
12 simpr 485 . . . . . . 7 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ π‘₯ = 𝑧)
1312ineq1d 4210 . . . . . 6 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ (π‘₯ ∩ 𝑦) = (𝑧 ∩ 𝑦))
1413eqeq1d 2734 . . . . 5 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ ((π‘₯ ∩ 𝑦) = βˆ… ↔ (𝑧 ∩ 𝑦) = βˆ…))
1514rexbidv 3178 . . . 4 ((𝐽 ∈ Top ∧ π‘₯ = 𝑧) β†’ (βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(𝑧 ∩ 𝑦) = βˆ…))
162, 11, 15opnneieqv 47496 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ…)))
17 sepnsepolem1 47507 . . . 4 (βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
1817a1i 11 . . 3 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐽 (𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…))))
195, 16, 183bitr4d 310 . 2 (𝐽 ∈ Top β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
201, 19syl 17 1 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜πΆ)βˆƒπ‘¦ ∈ ((neiβ€˜π½)β€˜π·)(π‘₯ ∩ 𝑦) = βˆ… ↔ βˆƒπ‘₯ ∈ 𝐽 βˆƒπ‘¦ ∈ 𝐽 (𝐢 βŠ† π‘₯ ∧ 𝐷 βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑦) = βˆ…)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  β€˜cfv 6540  Topctop 22386  neicnei 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-top 22387  df-nei 22593
This theorem is referenced by:  sepcsepo  47512  isnrm4  47516  iscnrm4  47540
  Copyright terms: Public domain W3C validator