![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2237). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3195 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rexcomOLD 3297 ceqsrexbv 3669 ceqsrex2v 3671 2reuswap 3768 2reuswap2 3769 2reu5 3780 2rmoswap 3783 dfiun2g 5053 iunrab 5075 iunin2 5094 iundif2 5097 reusv2lem4 5419 iunopab 5578 iunopabOLD 5579 cnvuni 5911 elidinxp 6073 xpdifid 6199 dfpo2 6327 elunirn 7288 f1oiso 7387 oprabrexex2 8019 oeeu 8659 trcl 9797 dfac5lem2 10193 axgroth4 10901 rexuz2 12964 4fvwrd4 13705 cshwsexaOLD 14873 divalglem10 16450 divalgb 16452 lsmelval2 21107 tgcmp 23430 hauscmplem 23435 unisngl 23556 xkobval 23615 txtube 23669 txcmplem1 23670 txkgen 23681 xkococnlem 23688 mbfaddlem 25714 mbfsup 25718 elaa 26376 dchrisumlem3 27553 elold 27926 0reno 28447 colperpexlem3 28758 midex 28763 iscgra1 28836 ax5seg 28971 edglnl 29178 usgr2pth0 29801 hhcmpl 31232 sumdmdii 32447 reuxfrdf 32519 unipreima 32662 fpwrelmapffslem 32746 elirng 33686 esumfsup 34034 reprdifc 34604 bnj168 34706 bnj1398 35010 cvmliftlem15 35266 ellines 36116 bj-elsngl 36934 bj-dfmpoa 37084 ptrecube 37580 cnambfre 37628 islshpat 38973 lfl1dim 39077 glbconxN 39335 3dim0 39414 2dim 39427 1dimN 39428 islpln5 39492 islvol5 39536 dalem20 39650 lhpex2leN 39970 mapdval4N 41589 rexrabdioph 42750 rmxdioph 42973 expdiophlem1 42978 imaiun1 43613 coiun1 43614 ismnuprim 44263 prmunb2 44280 fourierdlem48 46075 2reuimp0 47029 2reuimp 47030 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 dfvopnbgr2 47725 islindeps2 48212 isldepslvec2 48214 sepnsepolem1 48601 |
Copyright terms: Public domain | W3C validator |