| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2236). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3174 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rexcomOLD 3272 ceqsrexbv 3635 ceqsrex2v 3637 2reuswap 3729 2reuswap2 3730 2reu5 3741 2rmoswap 3744 dfiun2g 5006 iunrab 5028 iunin2 5047 iundif2 5050 reusv2lem4 5371 iunopab 5534 iunopabOLD 5535 cnvuni 5866 elidinxp 6031 xpdifid 6157 dfpo2 6285 elunirn 7243 f1oiso 7344 oprabrexex2 7977 oeeu 8615 trcl 9742 dfac5lem2 10138 axgroth4 10846 rexuz2 12915 4fvwrd4 13665 cshwsexaOLD 14843 divalglem10 16421 divalgb 16423 lsmelval2 21043 tgcmp 23339 hauscmplem 23344 unisngl 23465 xkobval 23524 txtube 23578 txcmplem1 23579 txkgen 23590 xkococnlem 23597 mbfaddlem 25613 mbfsup 25617 elaa 26276 dchrisumlem3 27454 elold 27833 0reno 28400 colperpexlem3 28711 midex 28716 iscgra1 28789 ax5seg 28917 edglnl 29122 usgr2pth0 29747 hhcmpl 31181 sumdmdii 32396 reuxfrdf 32472 unipreima 32621 fpwrelmapffslem 32709 elirng 33727 esumfsup 34101 reprdifc 34659 bnj168 34761 bnj1398 35065 cvmliftlem15 35320 ellines 36170 bj-elsngl 36986 bj-dfmpoa 37136 ptrecube 37644 cnambfre 37692 islshpat 39035 lfl1dim 39139 glbconxN 39397 3dim0 39476 2dim 39489 1dimN 39490 islpln5 39554 islvol5 39598 dalem20 39712 lhpex2leN 40032 mapdval4N 41651 rexrabdioph 42817 rmxdioph 43040 expdiophlem1 43045 imaiun1 43675 coiun1 43676 ismnuprim 44318 prmunb2 44335 fourierdlem48 46183 2reuimp0 47143 2reuimp 47144 wtgoldbnnsum4prm 47816 bgoldbnnsum3prm 47818 dfvopnbgr2 47866 stgredgiun 47970 islindeps2 48459 isldepslvec2 48461 sepnsepolem1 48896 |
| Copyright terms: Public domain | W3C validator |