| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2237). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3165 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: ceqsrexbv 3619 ceqsrex2v 3621 2reuswap 3714 2reuswap2 3715 2reu5 3726 2rmoswap 3729 dfiun2g 4990 iunrab 5011 iunin2 5030 iundif2 5033 reusv2lem4 5351 iunopab 5514 cnvuni 5840 elidinxp 6004 xpdifid 6129 dfpo2 6257 elunirn 7207 f1oiso 7308 oprabrexex2 7936 oeeu 8544 trcl 9657 dfac5lem2 10053 axgroth4 10761 rexuz2 12834 4fvwrd4 13585 cshwsexaOLD 14766 divalglem10 16348 divalgb 16350 lsmelval2 21024 tgcmp 23321 hauscmplem 23326 unisngl 23447 xkobval 23506 txtube 23560 txcmplem1 23561 txkgen 23572 xkococnlem 23579 mbfaddlem 25594 mbfsup 25598 elaa 26257 dchrisumlem3 27435 elold 27818 0reno 28401 colperpexlem3 28712 midex 28717 iscgra1 28790 ax5seg 28918 edglnl 29123 usgr2pth0 29745 hhcmpl 31179 sumdmdii 32394 reuxfrdf 32470 unipreima 32617 fpwrelmapffslem 32705 elirng 33674 esumfsup 34053 reprdifc 34611 bnj168 34713 bnj1398 35017 cvmliftlem15 35278 ellines 36133 bj-elsngl 36949 bj-dfmpoa 37099 ptrecube 37607 cnambfre 37655 islshpat 39003 lfl1dim 39107 glbconxN 39365 3dim0 39444 2dim 39457 1dimN 39458 islpln5 39522 islvol5 39566 dalem20 39680 lhpex2leN 40000 mapdval4N 41619 rexrabdioph 42775 rmxdioph 42998 expdiophlem1 43003 imaiun1 43633 coiun1 43634 ismnuprim 44276 prmunb2 44293 fourierdlem48 46145 2reuimp0 47108 2reuimp 47109 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 dfvopnbgr2 47846 stgredgiun 47950 islindeps2 48465 isldepslvec2 48467 sepnsepolem1 48903 |
| Copyright terms: Public domain | W3C validator |