| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1954 (see also 19.42 2239). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3162 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: ceqsrexbv 3606 ceqsrex2v 3608 2reuswap 3700 2reuswap2 3701 2reu5 3712 2rmoswap 3715 dfiun2g 4978 iunrab 4999 iunin2 5017 iundif2 5020 reusv2lem4 5337 iunopab 5497 cnvuni 5825 elidinxp 5992 xpdifid 6115 dfpo2 6243 elunirn 7185 f1oiso 7285 oprabrexex2 7910 oeeu 8518 trcl 9618 dfac5lem2 10015 axgroth4 10723 rexuz2 12797 4fvwrd4 13548 divalglem10 16313 divalgb 16315 lsmelval2 21019 tgcmp 23316 hauscmplem 23321 unisngl 23442 xkobval 23501 txtube 23555 txcmplem1 23556 txkgen 23567 xkococnlem 23574 mbfaddlem 25588 mbfsup 25592 elaa 26251 dchrisumlem3 27429 elold 27814 0reno 28399 colperpexlem3 28710 midex 28715 iscgra1 28788 ax5seg 28916 edglnl 29121 usgr2pth0 29743 hhcmpl 31180 sumdmdii 32395 reuxfrdf 32470 unipreima 32625 fpwrelmapffslem 32715 elirng 33699 esumfsup 34083 reprdifc 34640 bnj168 34742 bnj1398 35046 cvmliftlem15 35342 ellines 36196 bj-elsngl 37012 bj-dfmpoa 37162 ptrecube 37670 cnambfre 37718 islshpat 39126 lfl1dim 39230 glbconxN 39487 3dim0 39566 2dim 39579 1dimN 39580 islpln5 39644 islvol5 39688 dalem20 39802 lhpex2leN 40122 mapdval4N 41741 rexrabdioph 42897 rmxdioph 43119 expdiophlem1 43124 imaiun1 43754 coiun1 43755 ismnuprim 44397 prmunb2 44414 fourierdlem48 46262 2reuimp0 47224 2reuimp 47225 wtgoldbnnsum4prm 47912 bgoldbnnsum3prm 47914 dfvopnbgr2 47963 stgredgiun 48068 islindeps2 48594 isldepslvec2 48596 sepnsepolem1 49032 |
| Copyright terms: Public domain | W3C validator |