Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1960 (see also 19.42 2232). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3179 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-rex 3071 |
This theorem is referenced by: rexcom 3283 ceqsrexbv 3587 ceqsrex2v 3588 2reuswap 3684 2reuswap2 3685 2reu5 3696 2rmoswap 3699 iunrab 4986 iunin2 5004 iundif2 5007 reusv2lem4 5327 iunopab 5473 cnvuni 5792 elidinxp 5948 xpdifid 6068 dfpo2 6196 elunirn 7118 f1oiso 7215 oprabrexex2 7807 oeeu 8410 trcl 9469 dfac5lem2 9864 axgroth4 10572 rexuz2 12621 4fvwrd4 13358 cshwsexa 14518 divalglem10 16092 divalgb 16094 lsmelval2 20328 tgcmp 22533 hauscmplem 22538 unisngl 22659 xkobval 22718 txtube 22772 txcmplem1 22773 txkgen 22784 xkococnlem 22791 mbfaddlem 24805 mbfsup 24809 elaa 25457 dchrisumlem3 26620 colperpexlem3 27074 midex 27079 iscgra1 27152 ax5seg 27287 edglnl 27494 usgr2pth0 28112 hhcmpl 29541 sumdmdii 30756 reuxfrdf 30818 unipreima 30960 fpwrelmapffslem 31046 esumfsup 32017 reprdifc 32586 bnj168 32688 bnj1398 32993 cvmliftlem15 33239 elold 34032 ellines 34433 bj-elsngl 35137 bj-dfmpoa 35268 ptrecube 35756 cnambfre 35804 islshpat 37010 lfl1dim 37114 glbconxN 37371 3dim0 37450 2dim 37463 1dimN 37464 islpln5 37528 islvol5 37572 dalem20 37686 lhpex2leN 38006 mapdval4N 39625 rexrabdioph 40596 rmxdioph 40818 expdiophlem1 40823 imaiun1 41212 coiun1 41213 ismnuprim 41865 prmunb2 41882 fourierdlem48 43649 2reuimp0 44557 2reuimp 44558 wtgoldbnnsum4prm 45206 bgoldbnnsum3prm 45208 islindeps2 45776 isldepslvec2 45778 sepnsepolem1 46167 |
Copyright terms: Public domain | W3C validator |