| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2237). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3159 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: ceqsrexbv 3611 ceqsrex2v 3613 2reuswap 3706 2reuswap2 3707 2reu5 3718 2rmoswap 3721 dfiun2g 4980 iunrab 5001 iunin2 5020 iundif2 5023 reusv2lem4 5340 iunopab 5502 cnvuni 5829 elidinxp 5995 xpdifid 6117 dfpo2 6244 elunirn 7187 f1oiso 7288 oprabrexex2 7913 oeeu 8521 trcl 9624 dfac5lem2 10018 axgroth4 10726 rexuz2 12800 4fvwrd4 13551 cshwsexaOLD 14731 divalglem10 16313 divalgb 16315 lsmelval2 20989 tgcmp 23286 hauscmplem 23291 unisngl 23412 xkobval 23471 txtube 23525 txcmplem1 23526 txkgen 23537 xkococnlem 23544 mbfaddlem 25559 mbfsup 25563 elaa 26222 dchrisumlem3 27400 elold 27783 0reno 28366 colperpexlem3 28677 midex 28682 iscgra1 28755 ax5seg 28883 edglnl 29088 usgr2pth0 29710 hhcmpl 31144 sumdmdii 32359 reuxfrdf 32435 unipreima 32587 fpwrelmapffslem 32676 elirng 33659 esumfsup 34043 reprdifc 34601 bnj168 34703 bnj1398 35007 cvmliftlem15 35281 ellines 36136 bj-elsngl 36952 bj-dfmpoa 37102 ptrecube 37610 cnambfre 37658 islshpat 39006 lfl1dim 39110 glbconxN 39367 3dim0 39446 2dim 39459 1dimN 39460 islpln5 39524 islvol5 39568 dalem20 39682 lhpex2leN 40002 mapdval4N 41621 rexrabdioph 42777 rmxdioph 42999 expdiophlem1 43004 imaiun1 43634 coiun1 43635 ismnuprim 44277 prmunb2 44294 fourierdlem48 46145 2reuimp0 47108 2reuimp 47109 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 dfvopnbgr2 47847 stgredgiun 47952 islindeps2 48478 isldepslvec2 48480 sepnsepolem1 48916 |
| Copyright terms: Public domain | W3C validator |