Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1958 (see also 19.42 2232). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3273 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: rexcom 3281 ceqsrexbv 3579 ceqsrex2v 3580 2reuswap 3676 2reuswap2 3677 2reu5 3688 2rmoswap 3691 iunrab 4978 iunin2 4996 iundif2 4999 reusv2lem4 5319 iunopab 5465 cnvuni 5784 elidinxp 5940 xpdifid 6060 dfpo2 6188 elunirn 7106 f1oiso 7202 oprabrexex2 7794 oeeu 8396 trcl 9417 dfac5lem2 9811 axgroth4 10519 rexuz2 12568 4fvwrd4 13305 cshwsexa 14465 divalglem10 16039 divalgb 16041 lsmelval2 20262 tgcmp 22460 hauscmplem 22465 unisngl 22586 xkobval 22645 txtube 22699 txcmplem1 22700 txkgen 22711 xkococnlem 22718 mbfaddlem 24729 mbfsup 24733 elaa 25381 dchrisumlem3 26544 colperpexlem3 26997 midex 27002 iscgra1 27075 ax5seg 27209 edglnl 27416 usgr2pth0 28034 hhcmpl 29463 sumdmdii 30678 reuxfrdf 30740 unipreima 30882 fpwrelmapffslem 30969 esumfsup 31938 reprdifc 32507 bnj168 32609 bnj1398 32914 cvmliftlem15 33160 elold 33980 ellines 34381 bj-elsngl 35085 bj-dfmpoa 35216 ptrecube 35704 cnambfre 35752 islshpat 36958 lfl1dim 37062 glbconxN 37319 3dim0 37398 2dim 37411 1dimN 37412 islpln5 37476 islvol5 37520 dalem20 37634 lhpex2leN 37954 mapdval4N 39573 rexrabdioph 40532 rmxdioph 40754 expdiophlem1 40759 imaiun1 41148 coiun1 41149 ismnuprim 41801 prmunb2 41818 fourierdlem48 43585 2reuimp0 44493 2reuimp 44494 wtgoldbnnsum4prm 45142 bgoldbnnsum3prm 45144 islindeps2 45712 isldepslvec2 45714 sepnsepolem1 46103 |
Copyright terms: Public domain | W3C validator |