![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1950 (see also 19.42 2233). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3186 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3091 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: rexcomOLD 3288 ceqsrexbv 3655 ceqsrex2v 3657 2reuswap 3754 2reuswap2 3755 2reu5 3766 2rmoswap 3769 dfiun2g 5034 iunrab 5056 iunin2 5075 iundif2 5078 reusv2lem4 5406 iunopab 5568 iunopabOLD 5569 cnvuni 5899 elidinxp 6063 xpdifid 6189 dfpo2 6317 elunirn 7270 f1oiso 7370 oprabrexex2 8001 oeeu 8639 trcl 9765 dfac5lem2 10161 axgroth4 10869 rexuz2 12938 4fvwrd4 13684 cshwsexaOLD 14859 divalglem10 16435 divalgb 16437 lsmelval2 21101 tgcmp 23424 hauscmplem 23429 unisngl 23550 xkobval 23609 txtube 23663 txcmplem1 23664 txkgen 23675 xkococnlem 23682 mbfaddlem 25708 mbfsup 25712 elaa 26372 dchrisumlem3 27549 elold 27922 0reno 28443 colperpexlem3 28754 midex 28759 iscgra1 28832 ax5seg 28967 edglnl 29174 usgr2pth0 29797 hhcmpl 31228 sumdmdii 32443 reuxfrdf 32518 unipreima 32659 fpwrelmapffslem 32749 elirng 33700 esumfsup 34050 reprdifc 34620 bnj168 34722 bnj1398 35026 cvmliftlem15 35282 ellines 36133 bj-elsngl 36950 bj-dfmpoa 37100 ptrecube 37606 cnambfre 37654 islshpat 38998 lfl1dim 39102 glbconxN 39360 3dim0 39439 2dim 39452 1dimN 39453 islpln5 39517 islvol5 39561 dalem20 39675 lhpex2leN 39995 mapdval4N 41614 rexrabdioph 42781 rmxdioph 43004 expdiophlem1 43009 imaiun1 43640 coiun1 43641 ismnuprim 44289 prmunb2 44306 fourierdlem48 46109 2reuimp0 47063 2reuimp 47064 wtgoldbnnsum4prm 47726 bgoldbnnsum3prm 47728 dfvopnbgr2 47776 stgredgiun 47860 islindeps2 48328 isldepslvec2 48330 sepnsepolem1 48717 |
Copyright terms: Public domain | W3C validator |