| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2237). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3168 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: rexcomOLD 3268 ceqsrexbv 3625 ceqsrex2v 3627 2reuswap 3720 2reuswap2 3721 2reu5 3732 2rmoswap 3735 dfiun2g 4997 iunrab 5019 iunin2 5038 iundif2 5041 reusv2lem4 5359 iunopab 5522 iunopabOLD 5523 cnvuni 5853 elidinxp 6018 xpdifid 6144 dfpo2 6272 elunirn 7228 f1oiso 7329 oprabrexex2 7960 oeeu 8570 trcl 9688 dfac5lem2 10084 axgroth4 10792 rexuz2 12865 4fvwrd4 13616 cshwsexaOLD 14797 divalglem10 16379 divalgb 16381 lsmelval2 20999 tgcmp 23295 hauscmplem 23300 unisngl 23421 xkobval 23480 txtube 23534 txcmplem1 23535 txkgen 23546 xkococnlem 23553 mbfaddlem 25568 mbfsup 25572 elaa 26231 dchrisumlem3 27409 elold 27788 0reno 28355 colperpexlem3 28666 midex 28671 iscgra1 28744 ax5seg 28872 edglnl 29077 usgr2pth0 29702 hhcmpl 31136 sumdmdii 32351 reuxfrdf 32427 unipreima 32574 fpwrelmapffslem 32662 elirng 33688 esumfsup 34067 reprdifc 34625 bnj168 34727 bnj1398 35031 cvmliftlem15 35292 ellines 36147 bj-elsngl 36963 bj-dfmpoa 37113 ptrecube 37621 cnambfre 37669 islshpat 39017 lfl1dim 39121 glbconxN 39379 3dim0 39458 2dim 39471 1dimN 39472 islpln5 39536 islvol5 39580 dalem20 39694 lhpex2leN 40014 mapdval4N 41633 rexrabdioph 42789 rmxdioph 43012 expdiophlem1 43017 imaiun1 43647 coiun1 43648 ismnuprim 44290 prmunb2 44307 fourierdlem48 46159 2reuimp0 47119 2reuimp 47120 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 dfvopnbgr2 47857 stgredgiun 47961 islindeps2 48476 isldepslvec2 48478 sepnsepolem1 48914 |
| Copyright terms: Public domain | W3C validator |