| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.42v 1953 (see also 19.42 2237). (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 3167 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 2 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: ceqsrexbv 3622 ceqsrex2v 3624 2reuswap 3717 2reuswap2 3718 2reu5 3729 2rmoswap 3732 dfiun2g 4994 iunrab 5016 iunin2 5035 iundif2 5038 reusv2lem4 5356 iunopab 5519 iunopabOLD 5520 cnvuni 5850 elidinxp 6015 xpdifid 6141 dfpo2 6269 elunirn 7225 f1oiso 7326 oprabrexex2 7957 oeeu 8567 trcl 9681 dfac5lem2 10077 axgroth4 10785 rexuz2 12858 4fvwrd4 13609 cshwsexaOLD 14790 divalglem10 16372 divalgb 16374 lsmelval2 20992 tgcmp 23288 hauscmplem 23293 unisngl 23414 xkobval 23473 txtube 23527 txcmplem1 23528 txkgen 23539 xkococnlem 23546 mbfaddlem 25561 mbfsup 25565 elaa 26224 dchrisumlem3 27402 elold 27781 0reno 28348 colperpexlem3 28659 midex 28664 iscgra1 28737 ax5seg 28865 edglnl 29070 usgr2pth0 29695 hhcmpl 31129 sumdmdii 32344 reuxfrdf 32420 unipreima 32567 fpwrelmapffslem 32655 elirng 33681 esumfsup 34060 reprdifc 34618 bnj168 34720 bnj1398 35024 cvmliftlem15 35285 ellines 36140 bj-elsngl 36956 bj-dfmpoa 37106 ptrecube 37614 cnambfre 37662 islshpat 39010 lfl1dim 39114 glbconxN 39372 3dim0 39451 2dim 39464 1dimN 39465 islpln5 39529 islvol5 39573 dalem20 39687 lhpex2leN 40007 mapdval4N 41626 rexrabdioph 42782 rmxdioph 43005 expdiophlem1 43010 imaiun1 43640 coiun1 43641 ismnuprim 44283 prmunb2 44300 fourierdlem48 46152 2reuimp0 47115 2reuimp 47116 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 dfvopnbgr2 47853 stgredgiun 47957 islindeps2 48472 isldepslvec2 48474 sepnsepolem1 48910 |
| Copyright terms: Public domain | W3C validator |