Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1958 (see also 19.42 2230). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3277 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 461 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3182 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 461 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3071 |
This theorem is referenced by: rexcomOLD 3286 ceqsrexbv 3587 ceqsrex2v 3588 2reuswap 3682 2reuswap2 3683 2reu5 3694 2rmoswap 3697 dfiun2g 4961 iunrab 4983 iunin2 5001 iundif2 5004 reusv2lem4 5325 iunopab 5473 iunopabOLD 5474 cnvuni 5798 elidinxp 5954 xpdifid 6076 dfpo2 6203 elunirn 7133 f1oiso 7231 oprabrexex2 7830 oeeu 8443 trcl 9495 dfac5lem2 9889 axgroth4 10597 rexuz2 12648 4fvwrd4 13385 cshwsexa 14546 divalglem10 16120 divalgb 16122 lsmelval2 20356 tgcmp 22561 hauscmplem 22566 unisngl 22687 xkobval 22746 txtube 22800 txcmplem1 22801 txkgen 22812 xkococnlem 22819 mbfaddlem 24833 mbfsup 24837 elaa 25485 dchrisumlem3 26648 colperpexlem3 27102 midex 27107 iscgra1 27180 ax5seg 27315 edglnl 27522 usgr2pth0 28142 hhcmpl 29571 sumdmdii 30786 reuxfrdf 30848 unipreima 30990 fpwrelmapffslem 31076 esumfsup 32047 reprdifc 32616 bnj168 32718 bnj1398 33023 cvmliftlem15 33269 elold 34062 ellines 34463 bj-elsngl 35167 bj-dfmpoa 35298 ptrecube 35786 cnambfre 35834 islshpat 37038 lfl1dim 37142 glbconxN 37399 3dim0 37478 2dim 37491 1dimN 37492 islpln5 37556 islvol5 37600 dalem20 37714 lhpex2leN 38034 mapdval4N 39653 rexrabdioph 40623 rmxdioph 40845 expdiophlem1 40850 imaiun1 41266 coiun1 41267 ismnuprim 41919 prmunb2 41936 fourierdlem48 43702 2reuimp0 44617 2reuimp 44618 wtgoldbnnsum4prm 45265 bgoldbnnsum3prm 45267 islindeps2 45835 isldepslvec2 45837 sepnsepolem1 46226 |
Copyright terms: Public domain | W3C validator |