![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.42v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.42v 1955 (see also 19.42 2227). (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3186 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 459 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 3092 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 459 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-rex 3069 |
This theorem is referenced by: rexcomOLD 3286 ceqsrexbv 3643 ceqsrex2v 3645 2reuswap 3741 2reuswap2 3742 2reu5 3753 2rmoswap 3756 dfiun2g 5032 iunrab 5054 iunin2 5073 iundif2 5076 reusv2lem4 5398 iunopab 5558 iunopabOLD 5559 cnvuni 5885 elidinxp 6042 xpdifid 6166 dfpo2 6294 elunirn 7252 f1oiso 7350 oprabrexex2 7967 oeeu 8605 trcl 9725 dfac5lem2 10121 axgroth4 10829 rexuz2 12887 4fvwrd4 13625 cshwsexaOLD 14779 divalglem10 16349 divalgb 16351 lsmelval2 20840 tgcmp 23125 hauscmplem 23130 unisngl 23251 xkobval 23310 txtube 23364 txcmplem1 23365 txkgen 23376 xkococnlem 23383 mbfaddlem 25409 mbfsup 25413 elaa 26065 dchrisumlem3 27230 elold 27601 colperpexlem3 28250 midex 28255 iscgra1 28328 ax5seg 28463 edglnl 28670 usgr2pth0 29289 hhcmpl 30720 sumdmdii 31935 reuxfrdf 31998 unipreima 32136 fpwrelmapffslem 32224 elirng 33039 esumfsup 33366 reprdifc 33937 bnj168 34039 bnj1398 34343 cvmliftlem15 34587 ellines 35428 bj-elsngl 36152 bj-dfmpoa 36302 ptrecube 36791 cnambfre 36839 islshpat 38190 lfl1dim 38294 glbconxN 38552 3dim0 38631 2dim 38644 1dimN 38645 islpln5 38709 islvol5 38753 dalem20 38867 lhpex2leN 39187 mapdval4N 40806 rexrabdioph 41834 rmxdioph 42057 expdiophlem1 42062 imaiun1 42704 coiun1 42705 ismnuprim 43355 prmunb2 43372 fourierdlem48 45168 2reuimp0 46120 2reuimp 46121 wtgoldbnnsum4prm 46768 bgoldbnnsum3prm 46770 islindeps2 47251 isldepslvec2 47253 sepnsepolem1 47641 |
Copyright terms: Public domain | W3C validator |