MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r2 Structured version   Visualization version   GIF version

Theorem simp1r2 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1r2
StepHypRef Expression
1 simpr2 1194 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 1132 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088
This theorem is referenced by:  monmatcollpw  22602  lshpkrlem6  38452  atbtwnexOLDN  38785  atbtwnex  38786  3dim3  38807  4atlem11  38947  4atexlem7  39413  cdleme22b  39679
  Copyright terms: Public domain W3C validator