Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Visualization version   GIF version

Theorem 4atexlem7 39402
Description: Whenever there are at least 4 atoms under 𝑃 ∨ 𝑄 (specifically, 𝑃, 𝑄, π‘Ÿ, and (𝑃 ∨ 𝑄) ∧ π‘Š), there are also at least 4 atoms under 𝑃 ∨ 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p ∨ q/0 and hence p ∨ s/0 contains at least four atoms..." Note that by cvlsupr2 38669, our (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ) is a shorter way to express π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄). With a longer proof, the condition Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) could be eliminated (see 4atex 39403), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l ≀ = (leβ€˜πΎ)
4that.j ∨ = (joinβ€˜πΎ)
4that.a 𝐴 = (Atomsβ€˜πΎ)
4that.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
4atexlem7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Distinct variable groups:   𝑧,π‘Ÿ,𝐴   𝐻,π‘Ÿ   ∨ ,π‘Ÿ,𝑧   𝐾,π‘Ÿ,𝑧   ≀ ,π‘Ÿ,𝑧   𝑃,π‘Ÿ,𝑧   𝑄,π‘Ÿ,𝑧   𝑆,π‘Ÿ,𝑧   π‘Š,π‘Ÿ,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1281 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp1r1 1266 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
323ad2ant1 1130 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
4 simp1r2 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
543ad2ant1 1130 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
6 simp2 1134 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ π‘Ÿ ∈ 𝐴)
7 simp3l 1198 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ Β¬ π‘Ÿ ≀ π‘Š)
86, 7jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ (π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š))
9 simp1r3 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ∈ 𝐴)
1093ad2ant1 1130 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ 𝑆 ∈ 𝐴)
11 simp3r 1199 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))
12 simp12 1201 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ 𝑃 β‰  𝑄)
13 simp13 1202 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
14 4that.l . . . . . . 7 ≀ = (leβ€˜πΎ)
15 4that.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
16 eqid 2724 . . . . . . 7 (meetβ€˜πΎ) = (meetβ€˜πΎ)
17 4that.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
18 4that.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
1914, 15, 16, 17, 184atexlemex6 39401 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ ((𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1397 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘Ÿ ∈ 𝐴 ∧ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
2120rexlimdv3a 3151 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))))
22213exp 1116 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) β†’ (𝑃 β‰  𝑄 β†’ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))))))
23223impd 1345 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))))
24233impia 1114 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  lecple 17202  joincjn 18265  meetcmee 18266  Atomscatm 38589  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p0 18379  df-p1 18380  df-lat 18386  df-clat 18453  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lhyp 39315
This theorem is referenced by:  4atex  39403  cdleme21i  39662
  Copyright terms: Public domain W3C validator