Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Visualization version   GIF version

Theorem 4atexlem7 36685
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 35953, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). With a longer proof, the condition ¬ 𝑆 (𝑃 𝑄) could be eliminated (see 4atex 36686), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlem7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1264 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp1r1 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
323ad2ant1 1113 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp1r2 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
543ad2ant1 1113 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp2 1117 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑟𝐴)
7 simp3l 1181 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑟 𝑊)
86, 7jca 504 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
9 simp1r3 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
1093ad2ant1 1113 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑆𝐴)
11 simp3r 1182 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃 𝑟) = (𝑄 𝑟))
12 simp12 1184 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑃𝑄)
13 simp13 1185 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑆 (𝑃 𝑄))
14 4that.l . . . . . . 7 = (le‘𝐾)
15 4that.j . . . . . . 7 = (join‘𝐾)
16 eqid 2772 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 4that.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 4that.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
1914, 15, 16, 17, 184atexlemex6 36684 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑟) = (𝑄 𝑟) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1380 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
2120rexlimdv3a 3225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
22213exp 1099 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → (𝑃𝑄 → (¬ 𝑆 (𝑃 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))))
23223impd 1328 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
24233impia 1097 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wrex 3083   class class class wbr 4925  cfv 6185  (class class class)co 6974  lecple 16426  joincjn 17424  meetcmee 17425  Atomscatm 35873  HLchlt 35960  LHypclh 36594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-proset 17408  df-poset 17426  df-plt 17438  df-lub 17454  df-glb 17455  df-join 17456  df-meet 17457  df-p0 17519  df-p1 17520  df-lat 17526  df-clat 17588  df-oposet 35786  df-ol 35788  df-oml 35789  df-covers 35876  df-ats 35877  df-atl 35908  df-cvlat 35932  df-hlat 35961  df-llines 36108  df-lplanes 36109  df-lhyp 36598
This theorem is referenced by:  4atex  36686  cdleme21i  36945
  Copyright terms: Public domain W3C validator