Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Visualization version   GIF version

Theorem 4atexlem7 40058
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 39325, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). With a longer proof, the condition ¬ 𝑆 (𝑃 𝑄) could be eliminated (see 4atex 40059), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlem7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1283 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp1r1 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
323ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp1r2 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
543ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp2 1136 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑟𝐴)
7 simp3l 1200 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑟 𝑊)
86, 7jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
9 simp1r3 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
1093ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑆𝐴)
11 simp3r 1201 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃 𝑟) = (𝑄 𝑟))
12 simp12 1203 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑃𝑄)
13 simp13 1204 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑆 (𝑃 𝑄))
14 4that.l . . . . . . 7 = (le‘𝐾)
15 4that.j . . . . . . 7 = (join‘𝐾)
16 eqid 2735 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 4that.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 4that.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
1914, 15, 16, 17, 184atexlemex6 40057 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑟) = (𝑄 𝑟) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1399 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
2120rexlimdv3a 3157 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
22213exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → (𝑃𝑄 → (¬ 𝑆 (𝑃 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))))
23223impd 1347 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
24233impia 1116 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  HLchlt 39332  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lhyp 39971
This theorem is referenced by:  4atex  40059  cdleme21i  40318
  Copyright terms: Public domain W3C validator