Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Visualization version   GIF version

Theorem 4atexlem7 40064
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 39332, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). With a longer proof, the condition ¬ 𝑆 (𝑃 𝑄) could be eliminated (see 4atex 40065), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlem7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1285 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp1r1 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
323ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp1r2 1271 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
543ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑟𝐴)
7 simp3l 1202 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑟 𝑊)
86, 7jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
9 simp1r3 1272 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
1093ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑆𝐴)
11 simp3r 1203 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃 𝑟) = (𝑄 𝑟))
12 simp12 1205 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑃𝑄)
13 simp13 1206 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑆 (𝑃 𝑄))
14 4that.l . . . . . . 7 = (le‘𝐾)
15 4that.j . . . . . . 7 = (join‘𝐾)
16 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 4that.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 4that.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
1914, 15, 16, 17, 184atexlemex6 40063 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑟) = (𝑄 𝑟) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1402 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
2120rexlimdv3a 3134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
22213exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → (𝑃𝑄 → (¬ 𝑆 (𝑃 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))))
23223impd 1349 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
24233impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39252  HLchlt 39339  LHypclh 39973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lhyp 39977
This theorem is referenced by:  4atex  40065  cdleme21i  40324
  Copyright terms: Public domain W3C validator