Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Visualization version   GIF version

Theorem 4atexlem7 38083
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 37351, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). With a longer proof, the condition ¬ 𝑆 (𝑃 𝑄) could be eliminated (see 4atex 38084), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlem7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1283 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp1r1 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
323ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp1r2 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
543ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp2 1136 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑟𝐴)
7 simp3l 1200 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑟 𝑊)
86, 7jca 512 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
9 simp1r3 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
1093ad2ant1 1132 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑆𝐴)
11 simp3r 1201 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → (𝑃 𝑟) = (𝑄 𝑟))
12 simp12 1203 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → 𝑃𝑄)
13 simp13 1204 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ 𝑆 (𝑃 𝑄))
14 4that.l . . . . . . 7 = (le‘𝐾)
15 4that.j . . . . . . 7 = (join‘𝐾)
16 eqid 2740 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 4that.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 4that.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
1914, 15, 16, 17, 184atexlemex6 38082 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑟) = (𝑄 𝑟) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1399 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
2120rexlimdv3a 3217 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
22213exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → (𝑃𝑄 → (¬ 𝑆 (𝑃 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))))
23223impd 1347 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
24233impia 1116 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067   class class class wbr 5079  cfv 6431  (class class class)co 7269  lecple 16965  joincjn 18025  meetcmee 18026  Atomscatm 37271  HLchlt 37358  LHypclh 37992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-proset 18009  df-poset 18027  df-plt 18044  df-lub 18060  df-glb 18061  df-join 18062  df-meet 18063  df-p0 18139  df-p1 18140  df-lat 18146  df-clat 18213  df-oposet 37184  df-ol 37186  df-oml 37187  df-covers 37274  df-ats 37275  df-atl 37306  df-cvlat 37330  df-hlat 37359  df-llines 37506  df-lplanes 37507  df-lhyp 37996
This theorem is referenced by:  4atex  38084  cdleme21i  38343
  Copyright terms: Public domain W3C validator