MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 22806
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22797 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1𝑅)
monmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Base‘𝐴)
monmatcollpw.0 0 = (0g𝐴)
monmatcollpw.e = (.g‘(mulGrp‘𝑃))
monmatcollpw.x 𝑋 = (var1𝑅)
monmatcollpw.m · = ( ·𝑠𝐶)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑁 ∈ Fin)
2 crngring 20272 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 22270 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
65ad2antlr 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ Ring)
72adantl 481 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8 simp2 1137 . . . . . 6 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐿 ∈ ℕ0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
10 eqid 2740 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
11 monmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
12 eqid 2740 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
133, 9, 10, 11, 12ply1moncl 22295 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0) → (𝐿 𝑋) ∈ (Base‘𝑃))
147, 8, 13syl2an 595 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝐿 𝑋) ∈ (Base‘𝑃))
152anim2i 616 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1136 . . . . . . . 8 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀𝐾)
1715, 16anim12i 612 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
18 df-3an 1089 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
1917, 18sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Base‘𝐴)
23 monmatcollpw.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 22753 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (Base‘𝐶))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑇𝑀) ∈ (Base‘𝐶))
2614, 25jca 511 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
27 eqid 2740 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
28 monmatcollpw.m . . . . 5 · = ( ·𝑠𝐶)
2912, 23, 27, 28matvscl 22458 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶))) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
301, 6, 26, 29syl21anc 837 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
31 simpr3 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝐼 ∈ ℕ0)
3223, 27decpmatval 22792 . . 3 ((((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3330, 31, 32syl2anc 583 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3463ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
35263ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
36 3simpc 1150 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
37 eqid 2740 . . . . . . . 8 (.r𝑃) = (.r𝑃)
3823, 27, 12, 28, 37matvscacell 22463 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
3934, 35, 36, 38syl3anc 1371 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
4039fveq2d 6924 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗)) = (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))))
4140fveq1d 6922 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼))
4216anim2i 616 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
43 df-3an 1089 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
4442, 43sylibr 234 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
45443ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
46 eqid 2740 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
4720, 21, 22, 3, 46mat2pmatvalel 22752 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 583 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4948oveq2d 7464 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))))
503ply1assa 22222 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
5150ad2antlr 726 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ AssAlg)
52513ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ AssAlg)
53 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2740 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
55 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
56 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
5722eleq2i 2836 . . . . . . . . . . . . . 14 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
5857biimpi 216 . . . . . . . . . . . . 13 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
59583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀 ∈ (Base‘𝐴))
6059adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀 ∈ (Base‘𝐴))
61603ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
6221, 53, 54, 55, 56, 61matecld 22453 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
633ply1sca 22275 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6463adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6564eqcomd 2746 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
6665fveq2d 6924 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6766adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
68673ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6962, 68eleqtrrd 2847 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)))
70143ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝐿 𝑋) ∈ (Base‘𝑃))
71 eqid 2740 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
72 eqid 2740 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2740 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
7446, 71, 72, 12, 37, 73asclmul2 21930 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 𝑋) ∈ (Base‘𝑃)) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7552, 69, 70, 74syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7649, 75eqtrd 2780 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7776fveq2d 6924 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))))
7877fveq1d 6922 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼))
792ad2antlr 726 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ Ring)
80793ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
81 simp1r2 1270 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
82 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
8382, 53, 3, 9, 73, 10, 11coe1tm 22297 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8480, 62, 81, 83syl3anc 1371 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8584fveq1d 6922 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8641, 78, 853eqtrd 2784 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8786mpoeq3dva 7527 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0g𝐴)
8915adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 22446 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9388, 92eqtrid 2792 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 0 = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
94 eqidd 2741 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (0g𝑅) = (0g𝑅))
95 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
96 simprr 772 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
97 fvexd 6935 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
9893, 94, 95, 96, 97ovmpod 7602 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥 0 𝑦) = (0g𝑅))
9998eqcomd 2746 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) = (𝑥 0 𝑦))
10099ifeq2d 4568 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
101 eqidd 2741 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
102 oveq12 7457 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
103102ifeq1d 4567 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
104103mpteq2dv 5268 . . . . . . . 8 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
105104fveq1d 6922 . . . . . . 7 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼))
106 eqidd 2741 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
107 eqeq1 2744 . . . . . . . . . 10 (𝑙 = 𝐼 → (𝑙 = 𝐿𝐼 = 𝐿))
108107ifbid 4571 . . . . . . . . 9 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
109108adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
11031adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝐼 ∈ ℕ0)
111 ovex 7481 . . . . . . . . . 10 (𝑥𝑀𝑦) ∈ V
112 fvex 6933 . . . . . . . . . 10 (0g𝑅) ∈ V
113111, 112ifex 4598 . . . . . . . . 9 if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V)
115106, 109, 110, 114fvmptd 7036 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
116105, 115sylan9eqr 2802 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
117101, 116, 95, 96, 114ovmpod 7602 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
118 ifov 7551 . . . . . 6 (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
120100, 117, 1193eqtr4d 2790 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 3208 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ CRing)
123 eqidd 2741 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
124107ifbid 4571 . . . . . . . 8 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
125124adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
126313ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐼 ∈ ℕ0)
12753, 82ring0cl 20290 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (0g𝑅) ∈ (Base‘𝑅))
129128adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (0g𝑅) ∈ (Base‘𝑅))
1301293ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (0g𝑅) ∈ (Base‘𝑅))
13162, 130ifcld 4594 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) ∈ (Base‘𝑅))
132123, 125, 126, 131fvmptd 7036 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
133132, 131eqeltrd 2844 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) ∈ (Base‘𝑅))
13421, 53, 22, 1, 122, 133matbas2d 22450 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾)
13560, 57sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀𝐾)
13621matring 22470 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
13722, 88ring0cl 20290 . . . . . . 7 (𝐴 ∈ Ring → 0𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0𝐾)
139138adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 0𝐾)
140135, 139ifcld 4594 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 22451 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 583 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2784 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  ifcif 4548  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  0cn0 12553  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  AssAlgcasa 21893  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   matToPolyMat cmat2pmat 22731   decompPMat cdecpmat 22789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-mat2pmat 22734  df-decpmat 22790
This theorem is referenced by:  monmat2matmon  22851
  Copyright terms: Public domain W3C validator