MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 22768
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22759 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1𝑅)
monmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Base‘𝐴)
monmatcollpw.0 0 = (0g𝐴)
monmatcollpw.e = (.g‘(mulGrp‘𝑃))
monmatcollpw.x 𝑋 = (var1𝑅)
monmatcollpw.m · = ( ·𝑠𝐶)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑁 ∈ Fin)
2 crngring 20223 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 22232 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
65ad2antlr 725 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ Ring)
72adantl 480 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8 simp2 1134 . . . . . 6 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐿 ∈ ℕ0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
10 eqid 2726 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
11 monmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
12 eqid 2726 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
133, 9, 10, 11, 12ply1moncl 22257 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0) → (𝐿 𝑋) ∈ (Base‘𝑃))
147, 8, 13syl2an 594 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝐿 𝑋) ∈ (Base‘𝑃))
152anim2i 615 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1133 . . . . . . . 8 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀𝐾)
1715, 16anim12i 611 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
18 df-3an 1086 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
1917, 18sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Base‘𝐴)
23 monmatcollpw.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 22715 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (Base‘𝐶))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑇𝑀) ∈ (Base‘𝐶))
2614, 25jca 510 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
27 eqid 2726 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
28 monmatcollpw.m . . . . 5 · = ( ·𝑠𝐶)
2912, 23, 27, 28matvscl 22420 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶))) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
301, 6, 26, 29syl21anc 836 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
31 simpr3 1193 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝐼 ∈ ℕ0)
3223, 27decpmatval 22754 . . 3 ((((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3330, 31, 32syl2anc 582 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3463ad2ant1 1130 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
35263ad2ant1 1130 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
36 3simpc 1147 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
37 eqid 2726 . . . . . . . 8 (.r𝑃) = (.r𝑃)
3823, 27, 12, 28, 37matvscacell 22425 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
3934, 35, 36, 38syl3anc 1368 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
4039fveq2d 6896 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗)) = (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))))
4140fveq1d 6894 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼))
4216anim2i 615 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
43 df-3an 1086 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
4442, 43sylibr 233 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
45443ad2ant1 1130 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
46 eqid 2726 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
4720, 21, 22, 3, 46mat2pmatvalel 22714 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 582 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4948oveq2d 7431 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))))
503ply1assa 22184 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
5150ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ AssAlg)
52513ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ AssAlg)
53 eqid 2726 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2726 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
55 simp2 1134 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
56 simp3 1135 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
5722eleq2i 2818 . . . . . . . . . . . . . 14 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
5857biimpi 215 . . . . . . . . . . . . 13 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
59583ad2ant1 1130 . . . . . . . . . . . 12 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀 ∈ (Base‘𝐴))
6059adantl 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀 ∈ (Base‘𝐴))
61603ad2ant1 1130 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
6221, 53, 54, 55, 56, 61matecld 22415 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
633ply1sca 22237 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6463adantl 480 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6564eqcomd 2732 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
6665fveq2d 6896 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6766adantr 479 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
68673ad2ant1 1130 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6962, 68eleqtrrd 2829 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)))
70143ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝐿 𝑋) ∈ (Base‘𝑃))
71 eqid 2726 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
72 eqid 2726 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2726 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
7446, 71, 72, 12, 37, 73asclmul2 21879 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 𝑋) ∈ (Base‘𝑃)) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7552, 69, 70, 74syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7649, 75eqtrd 2766 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7776fveq2d 6896 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))))
7877fveq1d 6894 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼))
792ad2antlr 725 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ Ring)
80793ad2ant1 1130 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
81 simp1r2 1267 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
82 eqid 2726 . . . . . . 7 (0g𝑅) = (0g𝑅)
8382, 53, 3, 9, 73, 10, 11coe1tm 22259 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8480, 62, 81, 83syl3anc 1368 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8584fveq1d 6894 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8641, 78, 853eqtrd 2770 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8786mpoeq3dva 7493 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0g𝐴)
8915adantr 479 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 479 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 22408 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9388, 92eqtrid 2778 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 0 = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
94 eqidd 2727 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (0g𝑅) = (0g𝑅))
95 simprl 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
96 simprr 771 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
97 fvexd 6907 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
9893, 94, 95, 96, 97ovmpod 7569 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥 0 𝑦) = (0g𝑅))
9998eqcomd 2732 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) = (𝑥 0 𝑦))
10099ifeq2d 4545 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
101 eqidd 2727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
102 oveq12 7424 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
103102ifeq1d 4544 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
104103mpteq2dv 5247 . . . . . . . 8 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
105104fveq1d 6894 . . . . . . 7 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼))
106 eqidd 2727 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
107 eqeq1 2730 . . . . . . . . . 10 (𝑙 = 𝐼 → (𝑙 = 𝐿𝐼 = 𝐿))
108107ifbid 4548 . . . . . . . . 9 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
109108adantl 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
11031adantr 479 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝐼 ∈ ℕ0)
111 ovex 7448 . . . . . . . . . 10 (𝑥𝑀𝑦) ∈ V
112 fvex 6905 . . . . . . . . . 10 (0g𝑅) ∈ V
113111, 112ifex 4575 . . . . . . . . 9 if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V)
115106, 109, 110, 114fvmptd 7007 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
116105, 115sylan9eqr 2788 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
117101, 116, 95, 96, 114ovmpod 7569 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
118 ifov 7517 . . . . . 6 (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
120100, 117, 1193eqtr4d 2776 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 3191 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ CRing)
123 eqidd 2727 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
124107ifbid 4548 . . . . . . . 8 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
125124adantl 480 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
126313ad2ant1 1130 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐼 ∈ ℕ0)
12753, 82ring0cl 20241 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (0g𝑅) ∈ (Base‘𝑅))
129128adantr 479 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (0g𝑅) ∈ (Base‘𝑅))
1301293ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (0g𝑅) ∈ (Base‘𝑅))
13162, 130ifcld 4571 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) ∈ (Base‘𝑅))
132123, 125, 126, 131fvmptd 7007 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
133132, 131eqeltrd 2826 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) ∈ (Base‘𝑅))
13421, 53, 22, 1, 122, 133matbas2d 22412 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾)
13560, 57sylibr 233 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀𝐾)
13621matring 22432 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
13722, 88ring0cl 20241 . . . . . . 7 (𝐴 ∈ Ring → 0𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0𝐾)
139138adantr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 0𝐾)
140135, 139ifcld 4571 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 22413 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 582 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2770 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  Vcvv 3464  ifcif 4525  cmpt 5228  cfv 6545  (class class class)co 7415  cmpo 7417  Fincfn 8965  0cn0 12517  Basecbs 17207  .rcmulr 17261  Scalarcsca 17263   ·𝑠 cvsca 17264  0gc0g 17448  .gcmg 19056  mulGrpcmgp 20112  Ringcrg 20211  CRingccrg 20212  AssAlgcasa 21843  algSccascl 21845  var1cv1 22160  Poly1cpl1 22161  coe1cco1 22162   Mat cmat 22394   matToPolyMat cmat2pmat 22693   decompPMat cdecpmat 22751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4908  df-int 4949  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8848  df-pm 8849  df-ixp 8918  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-fsupp 9398  df-sup 9477  df-oi 9545  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-z 12604  df-dec 12723  df-uz 12868  df-fz 13532  df-fzo 13675  df-seq 14015  df-hash 14342  df-struct 17143  df-sets 17160  df-slot 17178  df-ndx 17190  df-base 17208  df-ress 17237  df-plusg 17273  df-mulr 17274  df-sca 17276  df-vsca 17277  df-ip 17278  df-tset 17279  df-ple 17280  df-ds 17282  df-hom 17284  df-cco 17285  df-0g 17450  df-gsum 17451  df-prds 17456  df-pws 17458  df-mre 17593  df-mrc 17594  df-acs 17596  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18767  df-submnd 18768  df-grp 18925  df-minusg 18926  df-sbg 18927  df-mulg 19057  df-subg 19112  df-ghm 19202  df-cntz 19306  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-cring 20214  df-subrng 20523  df-subrg 20548  df-lmod 20833  df-lss 20904  df-sra 21146  df-rgmod 21147  df-dsmm 21725  df-frlm 21740  df-assa 21846  df-ascl 21848  df-psr 21901  df-mvr 21902  df-mpl 21903  df-opsr 21905  df-psr1 22164  df-vr1 22165  df-ply1 22166  df-coe1 22167  df-mamu 22378  df-mat 22395  df-mat2pmat 22696  df-decpmat 22752
This theorem is referenced by:  monmat2matmon  22813
  Copyright terms: Public domain W3C validator