MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 22272
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22263 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1β€˜π‘…)
monmatcollpw.c 𝐢 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Baseβ€˜π΄)
monmatcollpw.0 0 = (0gβ€˜π΄)
monmatcollpw.e ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
monmatcollpw.x 𝑋 = (var1β€˜π‘…)
monmatcollpw.m Β· = ( ·𝑠 β€˜πΆ)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 π‘₯ 𝑦 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑁 ∈ Fin)
2 crngring 20061 . . . . . 6 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1β€˜π‘…)
43ply1ring 21761 . . . . . 6 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing β†’ 𝑃 ∈ Ring)
65ad2antlr 725 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑃 ∈ Ring)
72adantl 482 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑅 ∈ Ring)
8 simp2 1137 . . . . . 6 ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0) β†’ 𝐿 ∈ β„•0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1β€˜π‘…)
10 eqid 2732 . . . . . . 7 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
11 monmatcollpw.e . . . . . . 7 ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
12 eqid 2732 . . . . . . 7 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
133, 9, 10, 11, 12ply1moncl 21784 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ β„•0) β†’ (𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
147, 8, 13syl2an 596 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
152anim2i 617 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1136 . . . . . . . 8 ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0) β†’ 𝑀 ∈ 𝐾)
1715, 16anim12i 613 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐾))
18 df-3an 1089 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐾))
1917, 18sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Baseβ€˜π΄)
23 monmatcollpw.c . . . . . . 7 𝐢 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 22219 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ))
2614, 25jca 512 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ ((𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ) ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ)))
27 eqid 2732 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
28 monmatcollpw.m . . . . 5 Β· = ( ·𝑠 β€˜πΆ)
2912, 23, 27, 28matvscl 21924 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ) ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ))) β†’ ((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) ∈ (Baseβ€˜πΆ))
301, 6, 26, 29syl21anc 836 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ ((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) ∈ (Baseβ€˜πΆ))
31 simpr3 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝐼 ∈ β„•0)
3223, 27decpmatval 22258 . . 3 ((((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) ∈ (Baseβ€˜πΆ) ∧ 𝐼 ∈ β„•0) β†’ (((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) decompPMat 𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗))β€˜πΌ)))
3330, 31, 32syl2anc 584 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) decompPMat 𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗))β€˜πΌ)))
3463ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑃 ∈ Ring)
35263ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ) ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ)))
36 3simpc 1150 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))
37 eqid 2732 . . . . . . . 8 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
3823, 27, 12, 28, 37matvscacell 21929 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ) ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜πΆ)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) β†’ (𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗) = ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)))
3934, 35, 36, 38syl3anc 1371 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗) = ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)))
4039fveq2d 6892 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗)) = (coe1β€˜((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗))))
4140fveq1d 6890 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗))β€˜πΌ) = ((coe1β€˜((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)))β€˜πΌ))
4216anim2i 617 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ 𝐾))
43 df-3an 1089 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ 𝐾))
4442, 43sylibr 233 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾))
45443ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾))
46 eqid 2732 . . . . . . . . . 10 (algScβ€˜π‘ƒ) = (algScβ€˜π‘ƒ)
4720, 21, 22, 3, 46mat2pmatvalel 22218 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) β†’ (𝑖(π‘‡β€˜π‘€)𝑗) = ((algScβ€˜π‘ƒ)β€˜(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 584 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖(π‘‡β€˜π‘€)𝑗) = ((algScβ€˜π‘ƒ)β€˜(𝑖𝑀𝑗)))
4948oveq2d 7421 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)) = ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)((algScβ€˜π‘ƒ)β€˜(𝑖𝑀𝑗))))
503ply1assa 21714 . . . . . . . . . 10 (𝑅 ∈ CRing β†’ 𝑃 ∈ AssAlg)
5150ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑃 ∈ AssAlg)
52513ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑃 ∈ AssAlg)
53 eqid 2732 . . . . . . . . . 10 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
54 eqid 2732 . . . . . . . . . 10 (Baseβ€˜π΄) = (Baseβ€˜π΄)
55 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑖 ∈ 𝑁)
56 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑗 ∈ 𝑁)
5722eleq2i 2825 . . . . . . . . . . . . . 14 (𝑀 ∈ 𝐾 ↔ 𝑀 ∈ (Baseβ€˜π΄))
5857biimpi 215 . . . . . . . . . . . . 13 (𝑀 ∈ 𝐾 β†’ 𝑀 ∈ (Baseβ€˜π΄))
59583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0) β†’ 𝑀 ∈ (Baseβ€˜π΄))
6059adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑀 ∈ (Baseβ€˜π΄))
61603ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑀 ∈ (Baseβ€˜π΄))
6221, 53, 54, 55, 56, 61matecld 21919 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖𝑀𝑗) ∈ (Baseβ€˜π‘…))
633ply1sca 21766 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
6463adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
6564eqcomd 2738 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
6665fveq2d 6892 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜π‘…))
6766adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜π‘…))
68673ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜π‘…))
6962, 68eleqtrrd 2836 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖𝑀𝑗) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)))
70143ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
71 eqid 2732 . . . . . . . . 9 (Scalarβ€˜π‘ƒ) = (Scalarβ€˜π‘ƒ)
72 eqid 2732 . . . . . . . . 9 (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜(Scalarβ€˜π‘ƒ))
73 eqid 2732 . . . . . . . . 9 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
7446, 71, 72, 12, 37, 73asclmul2 21432 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)) ∧ (𝐿 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ)) β†’ ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)((algScβ€˜π‘ƒ)β€˜(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋)))
7552, 69, 70, 74syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)((algScβ€˜π‘ƒ)β€˜(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋)))
7649, 75eqtrd 2772 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋)))
7776fveq2d 6892 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (coe1β€˜((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗))) = (coe1β€˜((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋))))
7877fveq1d 6890 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜((𝐿 ↑ 𝑋)(.rβ€˜π‘ƒ)(𝑖(π‘‡β€˜π‘€)𝑗)))β€˜πΌ) = ((coe1β€˜((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋)))β€˜πΌ))
792ad2antlr 725 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑅 ∈ Ring)
80793ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑅 ∈ Ring)
81 simp1r2 1270 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝐿 ∈ β„•0)
82 eqid 2732 . . . . . . 7 (0gβ€˜π‘…) = (0gβ€˜π‘…)
8382, 53, 3, 9, 73, 10, 11coe1tm 21786 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Baseβ€˜π‘…) ∧ 𝐿 ∈ β„•0) β†’ (coe1β€˜((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…))))
8480, 62, 81, 83syl3anc 1371 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (coe1β€˜((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…))))
8584fveq1d 6890 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜((𝑖𝑀𝑗)( ·𝑠 β€˜π‘ƒ)(𝐿 ↑ 𝑋)))β€˜πΌ) = ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))
8641, 78, 853eqtrd 2776 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗))β€˜πΌ) = ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))
8786mpoeq3dva 7482 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€))𝑗))β€˜πΌ)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0gβ€˜π΄)
8915adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 21912 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π΄) = (𝑧 ∈ 𝑁, 𝑀 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (0gβ€˜π΄) = (𝑧 ∈ 𝑁, 𝑀 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
9388, 92eqtrid 2784 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 0 = (𝑧 ∈ 𝑁, 𝑀 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
94 eqidd 2733 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ (𝑧 = π‘₯ ∧ 𝑀 = 𝑦)) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘…))
95 simprl 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ π‘₯ ∈ 𝑁)
96 simprr 771 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 𝑦 ∈ 𝑁)
97 fvexd 6903 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (0gβ€˜π‘…) ∈ V)
9893, 94, 95, 96, 97ovmpod 7556 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (π‘₯ 0 𝑦) = (0gβ€˜π‘…))
9998eqcomd 2738 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (0gβ€˜π‘…) = (π‘₯ 0 𝑦))
10099ifeq2d 4547 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (π‘₯ 0 𝑦)))
101 eqidd 2733 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)))
102 oveq12 7414 . . . . . . . . . 10 ((𝑖 = π‘₯ ∧ 𝑗 = 𝑦) β†’ (𝑖𝑀𝑗) = (π‘₯𝑀𝑦))
103102ifeq1d 4546 . . . . . . . . 9 ((𝑖 = π‘₯ ∧ 𝑗 = 𝑦) β†’ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)) = if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
104103mpteq2dv 5249 . . . . . . . 8 ((𝑖 = π‘₯ ∧ 𝑗 = 𝑦) β†’ (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…))))
105104fveq1d 6890 . . . . . . 7 ((𝑖 = π‘₯ ∧ 𝑗 = 𝑦) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ) = ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))β€˜πΌ))
106 eqidd 2733 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…))))
107 eqeq1 2736 . . . . . . . . . 10 (𝑙 = 𝐼 β†’ (𝑙 = 𝐿 ↔ 𝐼 = 𝐿))
108107ifbid 4550 . . . . . . . . 9 (𝑙 = 𝐼 β†’ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
109108adantl 482 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑙 = 𝐼) β†’ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
11031adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 𝐼 ∈ β„•0)
111 ovex 7438 . . . . . . . . . 10 (π‘₯𝑀𝑦) ∈ V
112 fvex 6901 . . . . . . . . . 10 (0gβ€˜π‘…) ∈ V
113111, 112ifex 4577 . . . . . . . . 9 if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)) ∈ V)
115106, 109, 110, 114fvmptd 7002 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))β€˜πΌ) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
116105, 115sylan9eqr 2794 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ (𝑖 = π‘₯ ∧ 𝑗 = 𝑦)) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
117101, 116, 95, 96, 114ovmpod 7556 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (π‘₯(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))𝑦) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (0gβ€˜π‘…)))
118 ifov 7505 . . . . . 6 (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (π‘₯ 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (π‘₯𝑀𝑦), (π‘₯ 0 𝑦)))
120100, 117, 1193eqtr4d 2782 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (π‘₯(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))𝑦) = (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 3200 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))𝑦) = (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑅 ∈ CRing)
123 eqidd 2733 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…))))
124107ifbid 4550 . . . . . . . 8 (𝑙 = 𝐼 β†’ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))
125124adantl 482 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑙 = 𝐼) β†’ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))
126313ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝐼 ∈ β„•0)
12753, 82ring0cl 20077 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ (0gβ€˜π‘…) ∈ (Baseβ€˜π‘…))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (0gβ€˜π‘…) ∈ (Baseβ€˜π‘…))
129128adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (0gβ€˜π‘…) ∈ (Baseβ€˜π‘…))
1301293ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (0gβ€˜π‘…) ∈ (Baseβ€˜π‘…))
13162, 130ifcld 4573 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)) ∈ (Baseβ€˜π‘…))
132123, 125, 126, 131fvmptd 7002 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))
133132, 131eqeltrd 2833 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ) ∈ (Baseβ€˜π‘…))
13421, 53, 22, 1, 122, 133matbas2d 21916 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) ∈ 𝐾)
13560, 57sylibr 233 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 𝑀 ∈ 𝐾)
13621matring 21936 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 ∈ Ring)
13722, 88ring0cl 20077 . . . . . . 7 (𝐴 ∈ Ring β†’ 0 ∈ 𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 0 ∈ 𝐾)
139138adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ 0 ∈ 𝐾)
140135, 139ifcld 4573 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 21917 . . . 4 (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))𝑦) = (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ))𝑦) = (π‘₯if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0gβ€˜π‘…)))β€˜πΌ)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2776 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ β„•0 ∧ 𝐼 ∈ β„•0)) β†’ (((𝐿 ↑ 𝑋) Β· (π‘‡β€˜π‘€)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  ifcif 4527   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  β„•0cn0 12468  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  .gcmg 18944  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050  AssAlgcasa 21396  algSccascl 21398  var1cv1 21691  Poly1cpl1 21692  coe1cco1 21693   Mat cmat 21898   matToPolyMat cmat2pmat 22197   decompPMat cdecpmat 22255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-assa 21399  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-mamu 21877  df-mat 21899  df-mat2pmat 22200  df-decpmat 22256
This theorem is referenced by:  monmat2matmon  22317
  Copyright terms: Public domain W3C validator