MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 21928
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 21919 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1𝑅)
monmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Base‘𝐴)
monmatcollpw.0 0 = (0g𝐴)
monmatcollpw.e = (.g‘(mulGrp‘𝑃))
monmatcollpw.x 𝑋 = (var1𝑅)
monmatcollpw.m · = ( ·𝑠𝐶)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑁 ∈ Fin)
2 crngring 19795 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 21419 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
65ad2antlr 724 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ Ring)
72adantl 482 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8 simp2 1136 . . . . . 6 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐿 ∈ ℕ0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
10 eqid 2738 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
11 monmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
12 eqid 2738 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
133, 9, 10, 11, 12ply1moncl 21442 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0) → (𝐿 𝑋) ∈ (Base‘𝑃))
147, 8, 13syl2an 596 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝐿 𝑋) ∈ (Base‘𝑃))
152anim2i 617 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1135 . . . . . . . 8 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀𝐾)
1715, 16anim12i 613 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
18 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
1917, 18sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Base‘𝐴)
23 monmatcollpw.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 21875 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (Base‘𝐶))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑇𝑀) ∈ (Base‘𝐶))
2614, 25jca 512 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
27 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
28 monmatcollpw.m . . . . 5 · = ( ·𝑠𝐶)
2912, 23, 27, 28matvscl 21580 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶))) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
301, 6, 26, 29syl21anc 835 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
31 simpr3 1195 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝐼 ∈ ℕ0)
3223, 27decpmatval 21914 . . 3 ((((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3330, 31, 32syl2anc 584 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3463ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
35263ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
36 3simpc 1149 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
37 eqid 2738 . . . . . . . 8 (.r𝑃) = (.r𝑃)
3823, 27, 12, 28, 37matvscacell 21585 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
3934, 35, 36, 38syl3anc 1370 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
4039fveq2d 6778 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗)) = (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))))
4140fveq1d 6776 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼))
4216anim2i 617 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
43 df-3an 1088 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
4442, 43sylibr 233 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
45443ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
46 eqid 2738 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
4720, 21, 22, 3, 46mat2pmatvalel 21874 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 584 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4948oveq2d 7291 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))))
503ply1assa 21370 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
5150ad2antlr 724 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ AssAlg)
52513ad2ant1 1132 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ AssAlg)
53 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2738 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
55 simp2 1136 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
56 simp3 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
5722eleq2i 2830 . . . . . . . . . . . . . 14 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
5857biimpi 215 . . . . . . . . . . . . 13 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
59583ad2ant1 1132 . . . . . . . . . . . 12 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀 ∈ (Base‘𝐴))
6059adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀 ∈ (Base‘𝐴))
61603ad2ant1 1132 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
6221, 53, 54, 55, 56, 61matecld 21575 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
633ply1sca 21424 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6463adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6564eqcomd 2744 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
6665fveq2d 6778 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6766adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
68673ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6962, 68eleqtrrd 2842 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)))
70143ad2ant1 1132 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝐿 𝑋) ∈ (Base‘𝑃))
71 eqid 2738 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
72 eqid 2738 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2738 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
7446, 71, 72, 12, 37, 73asclmul2 21091 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 𝑋) ∈ (Base‘𝑃)) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7552, 69, 70, 74syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7649, 75eqtrd 2778 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7776fveq2d 6778 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))))
7877fveq1d 6776 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼))
792ad2antlr 724 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ Ring)
80793ad2ant1 1132 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
81 simp1r2 1269 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
82 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
8382, 53, 3, 9, 73, 10, 11coe1tm 21444 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8480, 62, 81, 83syl3anc 1370 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8584fveq1d 6776 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8641, 78, 853eqtrd 2782 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8786mpoeq3dva 7352 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0g𝐴)
8915adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 21568 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9388, 92eqtrid 2790 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 0 = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
94 eqidd 2739 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (0g𝑅) = (0g𝑅))
95 simprl 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
96 simprr 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
97 fvexd 6789 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
9893, 94, 95, 96, 97ovmpod 7425 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥 0 𝑦) = (0g𝑅))
9998eqcomd 2744 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) = (𝑥 0 𝑦))
10099ifeq2d 4479 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
101 eqidd 2739 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
102 oveq12 7284 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
103102ifeq1d 4478 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
104103mpteq2dv 5176 . . . . . . . 8 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
105104fveq1d 6776 . . . . . . 7 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼))
106 eqidd 2739 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
107 eqeq1 2742 . . . . . . . . . 10 (𝑙 = 𝐼 → (𝑙 = 𝐿𝐼 = 𝐿))
108107ifbid 4482 . . . . . . . . 9 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
109108adantl 482 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
11031adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝐼 ∈ ℕ0)
111 ovex 7308 . . . . . . . . . 10 (𝑥𝑀𝑦) ∈ V
112 fvex 6787 . . . . . . . . . 10 (0g𝑅) ∈ V
113111, 112ifex 4509 . . . . . . . . 9 if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V)
115106, 109, 110, 114fvmptd 6882 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
116105, 115sylan9eqr 2800 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
117101, 116, 95, 96, 114ovmpod 7425 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
118 ifov 7375 . . . . . 6 (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
120100, 117, 1193eqtr4d 2788 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 3123 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ CRing)
123 eqidd 2739 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
124107ifbid 4482 . . . . . . . 8 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
125124adantl 482 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
126313ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐼 ∈ ℕ0)
12753, 82ring0cl 19808 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (0g𝑅) ∈ (Base‘𝑅))
129128adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (0g𝑅) ∈ (Base‘𝑅))
1301293ad2ant1 1132 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (0g𝑅) ∈ (Base‘𝑅))
13162, 130ifcld 4505 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) ∈ (Base‘𝑅))
132123, 125, 126, 131fvmptd 6882 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
133132, 131eqeltrd 2839 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) ∈ (Base‘𝑅))
13421, 53, 22, 1, 122, 133matbas2d 21572 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾)
13560, 57sylibr 233 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀𝐾)
13621matring 21592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
13722, 88ring0cl 19808 . . . . . . 7 (𝐴 ∈ Ring → 0𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0𝐾)
139138adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 0𝐾)
140135, 139ifcld 4505 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 21573 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2782 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  ifcif 4459  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  0cn0 12233  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  .gcmg 18700  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  AssAlgcasa 21057  algSccascl 21059  var1cv1 21347  Poly1cpl1 21348  coe1cco1 21349   Mat cmat 21554   matToPolyMat cmat2pmat 21853   decompPMat cdecpmat 21911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-assa 21060  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mamu 21533  df-mat 21555  df-mat2pmat 21856  df-decpmat 21912
This theorem is referenced by:  monmat2matmon  21973
  Copyright terms: Public domain W3C validator