MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 22717
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22708 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1𝑅)
monmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Base‘𝐴)
monmatcollpw.0 0 = (0g𝐴)
monmatcollpw.e = (.g‘(mulGrp‘𝑃))
monmatcollpw.x 𝑋 = (var1𝑅)
monmatcollpw.m · = ( ·𝑠𝐶)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑁 ∈ Fin)
2 crngring 20205 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 22183 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
65ad2antlr 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ Ring)
72adantl 481 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8 simp2 1137 . . . . . 6 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐿 ∈ ℕ0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
10 eqid 2735 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
11 monmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
12 eqid 2735 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
133, 9, 10, 11, 12ply1moncl 22208 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0) → (𝐿 𝑋) ∈ (Base‘𝑃))
147, 8, 13syl2an 596 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝐿 𝑋) ∈ (Base‘𝑃))
152anim2i 617 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1136 . . . . . . . 8 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀𝐾)
1715, 16anim12i 613 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
18 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
1917, 18sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Base‘𝐴)
23 monmatcollpw.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 22664 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (Base‘𝐶))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑇𝑀) ∈ (Base‘𝐶))
2614, 25jca 511 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
27 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
28 monmatcollpw.m . . . . 5 · = ( ·𝑠𝐶)
2912, 23, 27, 28matvscl 22369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶))) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
301, 6, 26, 29syl21anc 837 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
31 simpr3 1197 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝐼 ∈ ℕ0)
3223, 27decpmatval 22703 . . 3 ((((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3330, 31, 32syl2anc 584 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3463ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
35263ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
36 3simpc 1150 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
37 eqid 2735 . . . . . . . 8 (.r𝑃) = (.r𝑃)
3823, 27, 12, 28, 37matvscacell 22374 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
3934, 35, 36, 38syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
4039fveq2d 6880 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗)) = (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))))
4140fveq1d 6878 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼))
4216anim2i 617 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
43 df-3an 1088 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
4442, 43sylibr 234 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
45443ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
46 eqid 2735 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
4720, 21, 22, 3, 46mat2pmatvalel 22663 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 584 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4948oveq2d 7421 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))))
503ply1assa 22135 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
5150ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ AssAlg)
52513ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ AssAlg)
53 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2735 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
55 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
56 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
5722eleq2i 2826 . . . . . . . . . . . . . 14 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
5857biimpi 216 . . . . . . . . . . . . 13 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
59583ad2ant1 1133 . . . . . . . . . . . 12 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀 ∈ (Base‘𝐴))
6059adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀 ∈ (Base‘𝐴))
61603ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
6221, 53, 54, 55, 56, 61matecld 22364 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
633ply1sca 22188 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6463adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6564eqcomd 2741 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
6665fveq2d 6880 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6766adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
68673ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6962, 68eleqtrrd 2837 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)))
70143ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝐿 𝑋) ∈ (Base‘𝑃))
71 eqid 2735 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
72 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
7446, 71, 72, 12, 37, 73asclmul2 21847 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 𝑋) ∈ (Base‘𝑃)) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7552, 69, 70, 74syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7649, 75eqtrd 2770 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7776fveq2d 6880 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))))
7877fveq1d 6878 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼))
792ad2antlr 727 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ Ring)
80793ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
81 simp1r2 1271 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
82 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
8382, 53, 3, 9, 73, 10, 11coe1tm 22210 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8480, 62, 81, 83syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8584fveq1d 6878 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8641, 78, 853eqtrd 2774 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8786mpoeq3dva 7484 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0g𝐴)
8915adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 22357 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9388, 92eqtrid 2782 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 0 = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
94 eqidd 2736 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (0g𝑅) = (0g𝑅))
95 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
96 simprr 772 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
97 fvexd 6891 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
9893, 94, 95, 96, 97ovmpod 7559 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥 0 𝑦) = (0g𝑅))
9998eqcomd 2741 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) = (𝑥 0 𝑦))
10099ifeq2d 4521 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
101 eqidd 2736 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
102 oveq12 7414 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
103102ifeq1d 4520 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
104103mpteq2dv 5215 . . . . . . . 8 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
105104fveq1d 6878 . . . . . . 7 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼))
106 eqidd 2736 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
107 eqeq1 2739 . . . . . . . . . 10 (𝑙 = 𝐼 → (𝑙 = 𝐿𝐼 = 𝐿))
108107ifbid 4524 . . . . . . . . 9 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
109108adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
11031adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝐼 ∈ ℕ0)
111 ovex 7438 . . . . . . . . . 10 (𝑥𝑀𝑦) ∈ V
112 fvex 6889 . . . . . . . . . 10 (0g𝑅) ∈ V
113111, 112ifex 4551 . . . . . . . . 9 if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V)
115106, 109, 110, 114fvmptd 6993 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
116105, 115sylan9eqr 2792 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
117101, 116, 95, 96, 114ovmpod 7559 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
118 ifov 7508 . . . . . 6 (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
120100, 117, 1193eqtr4d 2780 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 3187 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 768 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ CRing)
123 eqidd 2736 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
124107ifbid 4524 . . . . . . . 8 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
125124adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
126313ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐼 ∈ ℕ0)
12753, 82ring0cl 20227 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (0g𝑅) ∈ (Base‘𝑅))
129128adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (0g𝑅) ∈ (Base‘𝑅))
1301293ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (0g𝑅) ∈ (Base‘𝑅))
13162, 130ifcld 4547 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) ∈ (Base‘𝑅))
132123, 125, 126, 131fvmptd 6993 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
133132, 131eqeltrd 2834 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) ∈ (Base‘𝑅))
13421, 53, 22, 1, 122, 133matbas2d 22361 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾)
13560, 57sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀𝐾)
13621matring 22381 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
13722, 88ring0cl 20227 . . . . . . 7 (𝐴 ∈ Ring → 0𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0𝐾)
139138adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 0𝐾)
140135, 139ifcld 4547 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 22362 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2774 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  ifcif 4500  cmpt 5201  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  0cn0 12501  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  .gcmg 19050  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  AssAlgcasa 21810  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113   Mat cmat 22345   matToPolyMat cmat2pmat 22642   decompPMat cdecpmat 22700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-assa 21813  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mamu 22329  df-mat 22346  df-mat2pmat 22645  df-decpmat 22701
This theorem is referenced by:  monmat2matmon  22762
  Copyright terms: Public domain W3C validator