| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑁 ∈
Fin) |
| 2 | | crngring 20242 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 3 | | monmatcollpw.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
| 4 | 3 | ply1ring 22249 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 5 | 2, 4 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 6 | 5 | ad2antlr 727 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑃 ∈
Ring) |
| 7 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 8 | | simp2 1138 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)
→ 𝐿 ∈
ℕ0) |
| 9 | | monmatcollpw.x |
. . . . . . 7
⊢ 𝑋 = (var1‘𝑅) |
| 10 | | eqid 2737 |
. . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 11 | | monmatcollpw.e |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 12 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 13 | 3, 9, 10, 11, 12 | ply1moncl 22274 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0)
→ (𝐿 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 14 | 7, 8, 13 | syl2an 596 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝐿 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 15 | 2 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 16 | | simp1 1137 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)
→ 𝑀 ∈ 𝐾) |
| 17 | 15, 16 | anim12i 613 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ((𝑁 ∈ Fin ∧
𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐾)) |
| 18 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐾)) |
| 19 | 17, 18 | sylibr 234 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑁 ∈ Fin ∧
𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾)) |
| 20 | | monmatcollpw.t |
. . . . . . 7
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 21 | | monmatcollpw.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 22 | | monmatcollpw.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐴) |
| 23 | | monmatcollpw.c |
. . . . . . 7
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 24 | 20, 21, 22, 3, 23 | mat2pmatbas 22732 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (Base‘𝐶)) |
| 25 | 19, 24 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑇‘𝑀) ∈ (Base‘𝐶)) |
| 26 | 14, 25 | jca 511 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ((𝐿 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑀) ∈ (Base‘𝐶))) |
| 27 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 28 | | monmatcollpw.m |
. . . . 5
⊢ · = (
·𝑠 ‘𝐶) |
| 29 | 12, 23, 27, 28 | matvscl 22437 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑀) ∈ (Base‘𝐶))) → ((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) ∈ (Base‘𝐶)) |
| 30 | 1, 6, 26, 29 | syl21anc 838 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) ∈ (Base‘𝐶)) |
| 31 | | simpr3 1197 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝐼 ∈
ℕ0) |
| 32 | 23, 27 | decpmatval 22771 |
. . 3
⊢ ((((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) decompPMat 𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗))‘𝐼))) |
| 33 | 30, 31, 32 | syl2anc 584 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) decompPMat 𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗))‘𝐼))) |
| 34 | 6 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ Ring) |
| 35 | 26 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝐿 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑀) ∈ (Base‘𝐶))) |
| 36 | | 3simpc 1151 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
| 37 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 38 | 23, 27, 12, 28, 37 | matvscacell 22442 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ ((𝐿 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑀) ∈ (Base‘𝐶)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗) = ((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗))) |
| 39 | 34, 35, 36, 38 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗) = ((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗))) |
| 40 | 39 | fveq2d 6910 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗)) = (coe1‘((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗)))) |
| 41 | 40 | fveq1d 6908 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗)))‘𝐼)) |
| 42 | 16 | anim2i 617 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing) ∧ 𝑀 ∈ 𝐾)) |
| 43 | | df-3an 1089 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ 𝐾)) |
| 44 | 42, 43 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾)) |
| 45 | 44 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾)) |
| 46 | | eqid 2737 |
. . . . . . . . . 10
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 47 | 20, 21, 22, 3, 46 | mat2pmatvalel 22731 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗))) |
| 48 | 45, 36, 47 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑇‘𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗))) |
| 49 | 48 | oveq2d 7447 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗)) = ((𝐿 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗)))) |
| 50 | 3 | ply1assa 22201 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
| 51 | 50 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑃 ∈
AssAlg) |
| 52 | 51 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ AssAlg) |
| 53 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 54 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 55 | | simp2 1138 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 56 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 57 | 22 | eleq2i 2833 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ 𝐾 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 58 | 57 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ 𝐾 → 𝑀 ∈ (Base‘𝐴)) |
| 59 | 58 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)
→ 𝑀 ∈
(Base‘𝐴)) |
| 60 | 59 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑀 ∈
(Base‘𝐴)) |
| 61 | 60 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 62 | 21, 53, 54, 55, 56, 61 | matecld 22432 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 63 | 3 | ply1sca 22254 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃)) |
| 65 | 64 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Scalar‘𝑃) = 𝑅) |
| 66 | 65 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 67 | 66 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 68 | 67 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 69 | 62, 68 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃))) |
| 70 | 14 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐿 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 71 | | eqid 2737 |
. . . . . . . . 9
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 72 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 73 | | eqid 2737 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 74 | 46, 71, 72, 12, 37, 73 | asclmul2 21907 |
. . . . . . . 8
⊢ ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 ↑ 𝑋) ∈ (Base‘𝑃)) → ((𝐿 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋))) |
| 75 | 52, 69, 70, 74 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝐿 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋))) |
| 76 | 49, 75 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋))) |
| 77 | 76 | fveq2d 6910 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋)))) |
| 78 | 77 | fveq1d 6908 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘((𝐿 ↑ 𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋)))‘𝐼)) |
| 79 | 2 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑅 ∈
Ring) |
| 80 | 79 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 81 | | simp1r2 1271 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈
ℕ0) |
| 82 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 83 | 82, 53, 3, 9, 73, 10, 11 | coe1tm 22276 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) →
(coe1‘((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))) |
| 84 | 80, 62, 81, 83 | syl3anc 1373 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))) |
| 85 | 84 | fveq1d 6908 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠
‘𝑃)(𝐿 ↑ 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) |
| 86 | 41, 78, 85 | 3eqtrd 2781 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) |
| 87 | 86 | mpoeq3dva 7510 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖((𝐿 ↑ 𝑋) · (𝑇‘𝑀))𝑗))‘𝐼)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))) |
| 88 | | monmatcollpw.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐴) |
| 89 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑁 ∈ Fin ∧
𝑅 ∈
Ring)) |
| 90 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 91 | 21, 82 | mat0op 22425 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑧 ∈ 𝑁, 𝑤 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (0g‘𝐴) = (𝑧 ∈ 𝑁, 𝑤 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 93 | 88, 92 | eqtrid 2789 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 0 = (𝑧 ∈ 𝑁, 𝑤 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 94 | | eqidd 2738 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (0g‘𝑅) = (0g‘𝑅)) |
| 95 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝑥 ∈ 𝑁) |
| 96 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝑦 ∈ 𝑁) |
| 97 | | fvexd 6921 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
| 98 | 93, 94, 95, 96, 97 | ovmpod 7585 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥 0 𝑦) = (0g‘𝑅)) |
| 99 | 98 | eqcomd 2743 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (0g‘𝑅) = (𝑥 0 𝑦)) |
| 100 | 99 | ifeq2d 4546 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))) |
| 101 | | eqidd 2738 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))) |
| 102 | | oveq12 7440 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦)) |
| 103 | 102 | ifeq1d 4545 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 104 | 103 | mpteq2dv 5244 |
. . . . . . . 8
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)))) |
| 105 | 104 | fveq1d 6908 |
. . . . . . 7
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)))‘𝐼)) |
| 106 | | eqidd 2738 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)))) |
| 107 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐼 → (𝑙 = 𝐿 ↔ 𝐼 = 𝐿)) |
| 108 | 107 | ifbid 4549 |
. . . . . . . . 9
⊢ (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 109 | 108 | adantl 481 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 110 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝐼 ∈
ℕ0) |
| 111 | | ovex 7464 |
. . . . . . . . . 10
⊢ (𝑥𝑀𝑦) ∈ V |
| 112 | | fvex 6919 |
. . . . . . . . . 10
⊢
(0g‘𝑅) ∈ V |
| 113 | 111, 112 | ifex 4576 |
. . . . . . . . 9
⊢ if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)) ∈ V |
| 114 | 113 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)) ∈ V) |
| 115 | 106, 109,
110, 114 | fvmptd 7023 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 116 | 105, 115 | sylan9eqr 2799 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ (𝑖 = 𝑥 ∧ 𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 117 | 101, 116,
95, 96, 114 | ovmpod 7585 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g‘𝑅))) |
| 118 | | ifov 7534 |
. . . . . 6
⊢ (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)) |
| 119 | 118 | a1i 11 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))) |
| 120 | 100, 117,
119 | 3eqtr4d 2787 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)) |
| 121 | 120 | ralrimivva 3202 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ∀𝑥 ∈
𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)) |
| 122 | | simplr 769 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑅 ∈
CRing) |
| 123 | | eqidd 2738 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))) |
| 124 | 107 | ifbid 4549 |
. . . . . . . 8
⊢ (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅))) |
| 125 | 124 | adantl 481 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅))) |
| 126 | 31 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐼 ∈
ℕ0) |
| 127 | 53, 82 | ring0cl 20264 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 128 | 7, 127 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 129 | 128 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (0g‘𝑅) ∈ (Base‘𝑅)) |
| 130 | 129 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 131 | 62, 130 | ifcld 4572 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 132 | 123, 125,
126, 131 | fvmptd 7023 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅))) |
| 133 | 132, 131 | eqeltrd 2841 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼) ∈ (Base‘𝑅)) |
| 134 | 21, 53, 22, 1, 122, 133 | matbas2d 22429 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) ∈ 𝐾) |
| 135 | 60, 57 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 𝑀 ∈ 𝐾) |
| 136 | 21 | matring 22449 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 137 | 22, 88 | ring0cl 20264 |
. . . . . . 7
⊢ (𝐴 ∈ Ring → 0 ∈ 𝐾) |
| 138 | 15, 136, 137 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 ∈ 𝐾) |
| 139 | 138 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ 0
∈ 𝐾) |
| 140 | 135, 139 | ifcld 4572 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) |
| 141 | 21, 22 | eqmat 22430 |
. . . 4
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))) |
| 142 | 134, 140,
141 | syl2anc 584 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))) |
| 143 | 121, 142 | mpbird 257 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g‘𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 )) |
| 144 | 33, 87, 143 | 3eqtrd 2781 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0))
→ (((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 )) |