Step | Hyp | Ref
| Expression |
1 | | lshpkrlem.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
2 | | lshpkrlem.a |
. . 3
⊢ + =
(+g‘𝑊) |
3 | | lshpkrlem.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑊) |
4 | | lshpkrlem.p |
. . 3
⊢ ⊕ =
(LSSum‘𝑊) |
5 | | lshpkrlem.h |
. . 3
⊢ 𝐻 = (LSHyp‘𝑊) |
6 | | lshpkrlem.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
7 | 6 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑊 ∈ LVec) |
8 | | lshpkrlem.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝐻) |
9 | 8 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑈 ∈ 𝐻) |
10 | | lshpkrlem.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
11 | 10 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑍 ∈ 𝑉) |
12 | | simpr2 1192 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) |
13 | | lshpkrlem.e |
. . . 4
⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
14 | 13 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
15 | | lshpkrlem.d |
. . 3
⊢ 𝐷 = (Scalar‘𝑊) |
16 | | lshpkrlem.k |
. . 3
⊢ 𝐾 = (Base‘𝐷) |
17 | | lshpkrlem.t |
. . 3
⊢ · = (
·𝑠 ‘𝑊) |
18 | | lshpkrlem.o |
. . 3
⊢ 0 =
(0g‘𝐷) |
19 | | lshpkrlem.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
20 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19 | lshpkrlem3 36722 |
. 2
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ∃𝑟 ∈ 𝑈 𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍))) |
21 | | simpr3 1193 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) |
22 | 1, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19 | lshpkrlem3 36722 |
. 2
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ∃𝑠 ∈ 𝑈 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍))) |
23 | | lveclmod 19959 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
24 | 7, 23 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑊 ∈ LMod) |
25 | | simpr1 1191 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑙 ∈ 𝐾) |
26 | 1, 15, 17, 16 | lmodvscl 19732 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) → (𝑙 · 𝑢) ∈ 𝑉) |
27 | 24, 25, 12, 26 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑙 · 𝑢) ∈ 𝑉) |
28 | 1, 2 | lmodvacl 19729 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) |
29 | 24, 27, 21, 28 | syl3anc 1368 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) |
30 | 1, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19 | lshpkrlem3 36722 |
. 2
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ∃𝑧 ∈ 𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) |
31 | | 3reeanv 3286 |
. . 3
⊢
(∃𝑟 ∈
𝑈 ∃𝑠 ∈ 𝑈 ∃𝑧 ∈ 𝑈 (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟 ∈ 𝑈 𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ ∃𝑠 ∈ 𝑈 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ∃𝑧 ∈ 𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) |
32 | | simp1l 1194 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑) |
33 | | simp1r1 1266 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙 ∈ 𝐾) |
34 | | simp1r2 1267 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 ∈ 𝑉) |
35 | | simp1r3 1268 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 ∈ 𝑉) |
36 | | simp2ll 1237 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟 ∈ 𝑈) |
37 | | simp2lr 1238 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠 ∈ 𝑈) |
38 | | simp2r 1197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧 ∈ 𝑈) |
39 | 37, 38 | jca 515 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) |
40 | | simp31 1206 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍))) |
41 | | simp32 1207 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍))) |
42 | | simp33 1208 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) |
43 | 1, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19 | lshpkrlem5 36724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
44 | 32, 33, 34, 35, 36, 39, 40, 41, 42, 43 | syl333anc 1399 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ ((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
45 | 44 | 3exp 1116 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (((𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈) ∧ 𝑧 ∈ 𝑈) → ((𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
46 | 45 | expdimp 456 |
. . . . 5
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ (𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈)) → (𝑧 ∈ 𝑈 → ((𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
47 | 46 | rexlimdv 3207 |
. . . 4
⊢ (((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) ∧ (𝑟 ∈ 𝑈 ∧ 𝑠 ∈ 𝑈)) → (∃𝑧 ∈ 𝑈 (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)))) |
48 | 47 | rexlimdvva 3218 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (∃𝑟 ∈ 𝑈 ∃𝑠 ∈ 𝑈 ∃𝑧 ∈ 𝑈 (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)))) |
49 | 31, 48 | syl5bir 246 |
. 2
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ((∃𝑟 ∈ 𝑈 𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ ∃𝑠 ∈ 𝑈 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ∃𝑧 ∈ 𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)))) |
50 | 20, 22, 30, 49 | mp3and 1461 |
1
⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |