Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   GIF version

Theorem lshpkrlem6 36118
Description: Lemma for lshpkrex 36121. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦,𝑙
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   + (𝑣,𝑢)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   · (𝑣,𝑢)   𝑈(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐾(𝑦,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑋(𝑣,𝑢)   0 (𝑥,𝑦,𝑣,𝑢,𝑙)   𝑍(𝑣,𝑢)

Proof of Theorem lshpkrlem6
Dummy variables 𝑧 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . 3 + = (+g𝑊)
3 lshpkrlem.n . . 3 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . 3 = (LSSum‘𝑊)
5 lshpkrlem.h . . 3 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
76adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LVec)
8 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
98adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑈𝐻)
10 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
1110adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑍𝑉)
12 simpr2 1189 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
13 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 481 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkrlem.d . . 3 𝐷 = (Scalar‘𝑊)
16 lshpkrlem.k . . 3 𝐾 = (Base‘𝐷)
17 lshpkrlem.t . . 3 · = ( ·𝑠𝑊)
18 lshpkrlem.o . . 3 0 = (0g𝐷)
19 lshpkrlem.g . . 3 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 36115 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21 simpr3 1190 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 36115 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
23 lveclmod 19798 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
247, 23syl 17 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LMod)
25 simpr1 1188 . . . . 5 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑙𝐾)
261, 15, 17, 16lmodvscl 19571 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
2724, 25, 12, 26syl3anc 1365 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑙 · 𝑢) ∈ 𝑉)
281, 2lmodvacl 19568 . . . 4 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
2924, 27, 21, 28syl3anc 1365 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 36115 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
31 3reeanv 3374 . . 3 (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))))
32 simp1l 1191 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
33 simp1r1 1263 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp1r2 1264 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
35 simp1r3 1265 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
36 simp2ll 1234 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
37 simp2lr 1235 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
38 simp2r 1194 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
3937, 38jca 512 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠𝑈𝑧𝑈))
40 simp31 1203 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
41 simp32 1204 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42 simp33 1205 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 36117 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1396 . . . . . . 7 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
45443exp 1113 . . . . . 6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4645expdimp 453 . . . . 5 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (𝑧𝑈 → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4746rexlimdv 3288 . . . 4 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (∃𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4847rexlimdvva 3299 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4931, 48syl5bir 244 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
5020, 22, 30, 49mp3and 1457 1 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wrex 3144  {csn 4564  cmpt 5143  cfv 6352  crio 7105  (class class class)co 7148  Basecbs 16473  +gcplusg 16555  .rcmulr 16556  Scalarcsca 16558   ·𝑠 cvsca 16559  0gc0g 16703  LSSumclsm 18679  LModclmod 19554  LSpanclspn 19663  LVecclvec 19794  LSHypclsh 35978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-0g 16705  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-grp 18036  df-minusg 18037  df-sbg 18038  df-subg 18206  df-cntz 18377  df-lsm 18681  df-cmn 18828  df-abl 18829  df-mgp 19160  df-ur 19172  df-ring 19219  df-oppr 19293  df-dvdsr 19311  df-unit 19312  df-invr 19342  df-drng 19424  df-lmod 19556  df-lss 19624  df-lsp 19664  df-lvec 19795  df-lshyp 35980
This theorem is referenced by:  lshpkrcl  36119
  Copyright terms: Public domain W3C validator