Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   GIF version

Theorem lshpkrlem6 39097
Description: Lemma for lshpkrex 39100. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦,𝑙
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   + (𝑣,𝑢)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   · (𝑣,𝑢)   𝑈(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐾(𝑦,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑋(𝑣,𝑢)   0 (𝑥,𝑦,𝑣,𝑢,𝑙)   𝑍(𝑣,𝑢)

Proof of Theorem lshpkrlem6
Dummy variables 𝑧 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . 3 + = (+g𝑊)
3 lshpkrlem.n . . 3 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . 3 = (LSSum‘𝑊)
5 lshpkrlem.h . . 3 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
76adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LVec)
8 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
98adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑈𝐻)
10 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
1110adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑍𝑉)
12 simpr2 1194 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
13 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkrlem.d . . 3 𝐷 = (Scalar‘𝑊)
16 lshpkrlem.k . . 3 𝐾 = (Base‘𝐷)
17 lshpkrlem.t . . 3 · = ( ·𝑠𝑊)
18 lshpkrlem.o . . 3 0 = (0g𝐷)
19 lshpkrlem.g . . 3 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 39094 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21 simpr3 1195 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 39094 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
23 lveclmod 21123 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
247, 23syl 17 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LMod)
25 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑙𝐾)
261, 15, 17, 16lmodvscl 20893 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
2724, 25, 12, 26syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑙 · 𝑢) ∈ 𝑉)
281, 2lmodvacl 20890 . . . 4 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
2924, 27, 21, 28syl3anc 1370 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 39094 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
31 3reeanv 3228 . . 3 (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))))
32 simp1l 1196 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
33 simp1r1 1268 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp1r2 1269 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
35 simp1r3 1270 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
36 simp2ll 1239 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
37 simp2lr 1240 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
38 simp2r 1199 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
3937, 38jca 511 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠𝑈𝑧𝑈))
40 simp31 1208 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
41 simp32 1209 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42 simp33 1210 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 39096 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1401 . . . . . . 7 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
45443exp 1118 . . . . . 6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4645expdimp 452 . . . . 5 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (𝑧𝑈 → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4746rexlimdv 3151 . . . 4 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (∃𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4847rexlimdvva 3211 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4931, 48biimtrrid 243 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
5020, 22, 30, 49mp3and 1463 1 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {csn 4631  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  LSSumclsm 19667  LModclmod 20875  LSpanclspn 20987  LVecclvec 21119  LSHypclsh 38957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lshyp 38959
This theorem is referenced by:  lshpkrcl  39098
  Copyright terms: Public domain W3C validator