Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   GIF version

Theorem lshpkrlem6 38448
Description: Lemma for lshpkrex 38451. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦,𝑙
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   + (𝑣,𝑢)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   · (𝑣,𝑢)   𝑈(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐾(𝑦,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑋(𝑣,𝑢)   0 (𝑥,𝑦,𝑣,𝑢,𝑙)   𝑍(𝑣,𝑢)

Proof of Theorem lshpkrlem6
Dummy variables 𝑧 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . 3 + = (+g𝑊)
3 lshpkrlem.n . . 3 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . 3 = (LSSum‘𝑊)
5 lshpkrlem.h . . 3 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
76adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LVec)
8 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
98adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑈𝐻)
10 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
1110adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑍𝑉)
12 simpr2 1194 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
13 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkrlem.d . . 3 𝐷 = (Scalar‘𝑊)
16 lshpkrlem.k . . 3 𝐾 = (Base‘𝐷)
17 lshpkrlem.t . . 3 · = ( ·𝑠𝑊)
18 lshpkrlem.o . . 3 0 = (0g𝐷)
19 lshpkrlem.g . . 3 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 38445 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21 simpr3 1195 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 38445 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
23 lveclmod 20949 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
247, 23syl 17 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LMod)
25 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑙𝐾)
261, 15, 17, 16lmodvscl 20720 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
2724, 25, 12, 26syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑙 · 𝑢) ∈ 𝑉)
281, 2lmodvacl 20717 . . . 4 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
2924, 27, 21, 28syl3anc 1370 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 38445 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
31 3reeanv 3226 . . 3 (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))))
32 simp1l 1196 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
33 simp1r1 1268 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp1r2 1269 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
35 simp1r3 1270 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
36 simp2ll 1239 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
37 simp2lr 1240 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
38 simp2r 1199 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
3937, 38jca 511 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠𝑈𝑧𝑈))
40 simp31 1208 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
41 simp32 1209 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42 simp33 1210 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 38447 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1401 . . . . . . 7 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
45443exp 1118 . . . . . 6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4645expdimp 452 . . . . 5 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (𝑧𝑈 → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4746rexlimdv 3152 . . . 4 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (∃𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4847rexlimdvva 3210 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4931, 48biimtrrid 242 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
5020, 22, 30, 49mp3and 1463 1 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  {csn 4628  cmpt 5231  cfv 6543  crio 7367  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  LSSumclsm 19550  LModclmod 20702  LSpanclspn 20814  LVecclvec 20945  LSHypclsh 38308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19046  df-cntz 19229  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-drng 20585  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lvec 20946  df-lshyp 38310
This theorem is referenced by:  lshpkrcl  38449
  Copyright terms: Public domain W3C validator