Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim3 Structured version   Visualization version   GIF version

Theorem 3dim3 39436
Description: Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem 3dim3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim2 39435 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
543adant3r1 1183 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
6 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
7 simp3l 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 (𝑄 𝑅))
8 simp1l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ HL)
9 simp1r2 1271 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑄𝐴)
101, 3hlatjidm 39335 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑄) = 𝑄)
1211oveq1d 7384 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
1312breq2d 5114 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑣 ((𝑄 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
147, 13mtbird 325 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑄 𝑄) 𝑅))
15 oveq1 7376 . . . . . . . . . . 11 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615oveq1d 7384 . . . . . . . . . 10 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1716breq2d 5114 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑄 𝑄) 𝑅)))
1817notbid 318 . . . . . . . 8 (𝑃 = 𝑄 → (¬ 𝑣 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑄 𝑄) 𝑅)))
1918biimparc 479 . . . . . . 7 ((¬ 𝑣 ((𝑄 𝑄) 𝑅) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
2014, 19sylan 580 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
21 breq1 5105 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑃 𝑄) 𝑅)))
2221notbid 318 . . . . . . 7 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑅)))
2322rspcev 3585 . . . . . 6 ((𝑣𝐴 ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
246, 20, 23syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
25 simp2l 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑣𝐴)
2625ad2antrr 726 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → 𝑣𝐴)
277ad2antrr 726 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 (𝑄 𝑅))
281, 3hlatjass 39336 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
29283ad2ant1 1133 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
3029ad2antrr 726 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
318hllatd 39330 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ Lat)
32 simp1r1 1270 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃𝐴)
33 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
3433, 3atbase 39255 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃 ∈ (Base‘𝐾))
36 simp1r3 1272 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑅𝐴)
3733, 1, 3hlatjcl 39333 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
388, 9, 36, 37syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑅) ∈ (Base‘𝐾))
3931, 35, 383jca 1128 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4039adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4133, 2, 1latleeqj1 18386 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4240, 41syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4342biimpa 476 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 (𝑄 𝑅)) = (𝑄 𝑅))
4430, 43eqtrd 2764 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
4544breq2d 5114 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
4627, 45mtbird 325 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
4726, 46, 23syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
48 simpl2r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑤𝐴)
4948ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑤𝐴)
508, 32, 93jca 1128 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5150ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5236, 25jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑅𝐴𝑣𝐴))
5352ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
54 simpl3r 1230 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
5554ad2antrr 726 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
56 simplr 768 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
57 simpr 484 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑃 ((𝑄 𝑅) 𝑣))
581, 2, 33dimlem3a 39427 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑤 ((𝑄 𝑅) 𝑣) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
5951, 53, 55, 56, 57, 58syl113anc 1384 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
60 breq1 5105 . . . . . . . . . 10 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑤 ((𝑃 𝑄) 𝑅)))
6160notbid 318 . . . . . . . . 9 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑅)))
6261rspcev 3585 . . . . . . . 8 ((𝑤𝐴 ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
6349, 59, 62syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
64 simpl2l 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑣𝐴)
6564ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑣𝐴)
6650ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6752ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
68 simpl3l 1229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑣 (𝑄 𝑅))
6968ad2antrr 726 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 (𝑄 𝑅))
70 simplr 768 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
71 simpr 484 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 ((𝑄 𝑅) 𝑣))
721, 2, 33dimlem4a 39430 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7366, 67, 69, 70, 71, 72syl113anc 1384 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7465, 73, 23syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7563, 74pm2.61dan 812 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7647, 75pm2.61dan 812 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7724, 76pm2.61dane 3012 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
78773exp 1119 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑣𝐴𝑤𝐴) → ((¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))))
7978rexlimdvv 3191 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅)))
805, 79mpd 15 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  Latclat 18366  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  lvolex3N  39505  dalem18  39648  dvh4dimat  41405
  Copyright terms: Public domain W3C validator