Step | Hyp | Ref
| Expression |
1 | | 3dim0.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
2 | | 3dim0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | 3dim0.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 1, 2, 3 | 3dim2 37482 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) |
5 | 4 | 3adant3r1 1181 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) |
6 | | simpl2l 1225 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣 ∈ 𝐴) |
7 | | simp3l 1200 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑅)) |
8 | | simp1l 1196 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝐾 ∈ HL) |
9 | | simp1r2 1269 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝑄 ∈ 𝐴) |
10 | 1, 3 | hlatjidm 37383 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝑄 ∨ 𝑄) = 𝑄) |
12 | 11 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ((𝑄 ∨ 𝑄) ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
13 | 12 | breq2d 5086 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝑣 ≤ ((𝑄 ∨ 𝑄) ∨ 𝑅) ↔ 𝑣 ≤ (𝑄 ∨ 𝑅))) |
14 | 7, 13 | mtbird 325 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ¬ 𝑣 ≤ ((𝑄 ∨ 𝑄) ∨ 𝑅)) |
15 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
16 | 15 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑄 ∨ 𝑄) ∨ 𝑅)) |
17 | 16 | breq2d 5086 |
. . . . . . . . 9
⊢ (𝑃 = 𝑄 → (𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑣 ≤ ((𝑄 ∨ 𝑄) ∨ 𝑅))) |
18 | 17 | notbid 318 |
. . . . . . . 8
⊢ (𝑃 = 𝑄 → (¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ ¬ 𝑣 ≤ ((𝑄 ∨ 𝑄) ∨ 𝑅))) |
19 | 18 | biimparc 480 |
. . . . . . 7
⊢ ((¬
𝑣 ≤ ((𝑄 ∨ 𝑄) ∨ 𝑅) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
20 | 14, 19 | sylan 580 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
21 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑠 = 𝑣 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
22 | 21 | notbid 318 |
. . . . . . 7
⊢ (𝑠 = 𝑣 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
23 | 22 | rspcev 3561 |
. . . . . 6
⊢ ((𝑣 ∈ 𝐴 ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
24 | 6, 20, 23 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
25 | | simp2l 1198 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝑣 ∈ 𝐴) |
26 | 25 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑣 ∈ 𝐴) |
27 | 7 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑅)) |
28 | 1, 3 | hlatjass 37384 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
29 | 28 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
30 | 29 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
31 | 8 | hllatd 37378 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝐾 ∈ Lat) |
32 | | simp1r1 1268 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝑃 ∈ 𝐴) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
34 | 33, 3 | atbase 37303 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝑃 ∈ (Base‘𝐾)) |
36 | | simp1r3 1270 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → 𝑅 ∈ 𝐴) |
37 | 33, 1, 3 | hlatjcl 37381 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
38 | 8, 9, 36, 37 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
39 | 31, 35, 38 | 3jca 1127 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) |
40 | 39 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) |
41 | 33, 2, 1 | latleeqj1 18169 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ (𝑄 ∨ 𝑅)) = (𝑄 ∨ 𝑅))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ (𝑄 ∨ 𝑅)) = (𝑄 ∨ 𝑅))) |
43 | 42 | biimpa 477 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑃 ∨ (𝑄 ∨ 𝑅)) = (𝑄 ∨ 𝑅)) |
44 | 30, 43 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
45 | 44 | breq2d 5086 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑣 ≤ (𝑄 ∨ 𝑅))) |
46 | 27, 45 | mtbird 325 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
47 | 26, 46, 23 | syl2anc 584 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
48 | | simpl2r 1226 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → 𝑤 ∈ 𝐴) |
49 | 48 | ad2antrr 723 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → 𝑤 ∈ 𝐴) |
50 | 8, 32, 9 | 3jca 1127 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
51 | 50 | ad3antrrr 727 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
52 | 36, 25 | jca 512 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → (𝑅 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) |
53 | 52 | ad3antrrr 727 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → (𝑅 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) |
54 | | simpl3r 1228 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) |
55 | 54 | ad2antrr 723 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) |
56 | | simplr 766 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) |
57 | | simpr 485 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) |
58 | 1, 2, 3 | 3dimlem3a 37474 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
59 | 51, 53, 55, 56, 57, 58 | syl113anc 1381 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
60 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑤 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
61 | 60 | notbid 318 |
. . . . . . . . 9
⊢ (𝑠 = 𝑤 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
62 | 61 | rspcev 3561 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐴 ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
63 | 49, 59, 62 | syl2anc 584 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
64 | | simpl2l 1225 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → 𝑣 ∈ 𝐴) |
65 | 64 | ad2antrr 723 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → 𝑣 ∈ 𝐴) |
66 | 50 | ad3antrrr 727 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
67 | 52 | ad3antrrr 727 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → (𝑅 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) |
68 | | simpl3l 1227 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑅)) |
69 | 68 | ad2antrr 723 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑅)) |
70 | | simplr 766 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) |
71 | | simpr 485 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) |
72 | 1, 2, 3 | 3dimlem4a 37477 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
73 | 66, 67, 69, 70, 71, 72 | syl113anc 1381 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
74 | 65, 73, 23 | syl2anc 584 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
75 | 63, 74 | pm2.61dan 810 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
76 | 47, 75 | pm2.61dan 810 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
77 | 24, 76 | pm2.61dane 3032 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣))) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
78 | 77 | 3exp 1118 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → ((¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)))) |
79 | 78 | rexlimdvv 3222 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (¬ 𝑣 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑣)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
80 | 5, 79 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |