Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim3 Structured version   Visualization version   GIF version

Theorem 3dim3 37483
Description: Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem 3dim3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim2 37482 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
543adant3r1 1181 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
6 simpl2l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
7 simp3l 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 (𝑄 𝑅))
8 simp1l 1196 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ HL)
9 simp1r2 1269 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑄𝐴)
101, 3hlatjidm 37383 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑄) = 𝑄)
1211oveq1d 7290 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
1312breq2d 5086 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑣 ((𝑄 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
147, 13mtbird 325 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑄 𝑄) 𝑅))
15 oveq1 7282 . . . . . . . . . . 11 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615oveq1d 7290 . . . . . . . . . 10 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1716breq2d 5086 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑄 𝑄) 𝑅)))
1817notbid 318 . . . . . . . 8 (𝑃 = 𝑄 → (¬ 𝑣 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑄 𝑄) 𝑅)))
1918biimparc 480 . . . . . . 7 ((¬ 𝑣 ((𝑄 𝑄) 𝑅) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
2014, 19sylan 580 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
21 breq1 5077 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑃 𝑄) 𝑅)))
2221notbid 318 . . . . . . 7 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑅)))
2322rspcev 3561 . . . . . 6 ((𝑣𝐴 ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
246, 20, 23syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
25 simp2l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑣𝐴)
2625ad2antrr 723 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → 𝑣𝐴)
277ad2antrr 723 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 (𝑄 𝑅))
281, 3hlatjass 37384 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
29283ad2ant1 1132 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
3029ad2antrr 723 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
318hllatd 37378 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ Lat)
32 simp1r1 1268 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃𝐴)
33 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
3433, 3atbase 37303 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃 ∈ (Base‘𝐾))
36 simp1r3 1270 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑅𝐴)
3733, 1, 3hlatjcl 37381 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
388, 9, 36, 37syl3anc 1370 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑅) ∈ (Base‘𝐾))
3931, 35, 383jca 1127 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4039adantr 481 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4133, 2, 1latleeqj1 18169 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4240, 41syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4342biimpa 477 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 (𝑄 𝑅)) = (𝑄 𝑅))
4430, 43eqtrd 2778 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
4544breq2d 5086 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
4627, 45mtbird 325 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
4726, 46, 23syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
48 simpl2r 1226 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑤𝐴)
4948ad2antrr 723 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑤𝐴)
508, 32, 93jca 1127 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5150ad3antrrr 727 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5236, 25jca 512 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑅𝐴𝑣𝐴))
5352ad3antrrr 727 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
54 simpl3r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
5554ad2antrr 723 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
56 simplr 766 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
57 simpr 485 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑃 ((𝑄 𝑅) 𝑣))
581, 2, 33dimlem3a 37474 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑤 ((𝑄 𝑅) 𝑣) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
5951, 53, 55, 56, 57, 58syl113anc 1381 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
60 breq1 5077 . . . . . . . . . 10 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑤 ((𝑃 𝑄) 𝑅)))
6160notbid 318 . . . . . . . . 9 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑅)))
6261rspcev 3561 . . . . . . . 8 ((𝑤𝐴 ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
6349, 59, 62syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
64 simpl2l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑣𝐴)
6564ad2antrr 723 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑣𝐴)
6650ad3antrrr 727 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6752ad3antrrr 727 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
68 simpl3l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑣 (𝑄 𝑅))
6968ad2antrr 723 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 (𝑄 𝑅))
70 simplr 766 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
71 simpr 485 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 ((𝑄 𝑅) 𝑣))
721, 2, 33dimlem4a 37477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7366, 67, 69, 70, 71, 72syl113anc 1381 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7465, 73, 23syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7563, 74pm2.61dan 810 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7647, 75pm2.61dan 810 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7724, 76pm2.61dane 3032 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
78773exp 1118 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑣𝐴𝑤𝐴) → ((¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))))
7978rexlimdvv 3222 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅)))
805, 79mpd 15 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  lvolex3N  37552  dalem18  37695  dvh4dimat  39452
  Copyright terms: Public domain W3C validator