Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim3 Structured version   Visualization version   GIF version

Theorem 3dim3 39471
Description: Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem 3dim3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim2 39470 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
543adant3r1 1183 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
6 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
7 simp3l 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 (𝑄 𝑅))
8 simp1l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ HL)
9 simp1r2 1271 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑄𝐴)
101, 3hlatjidm 39370 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑄) = 𝑄)
1211oveq1d 7446 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
1312breq2d 5155 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑣 ((𝑄 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
147, 13mtbird 325 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑄 𝑄) 𝑅))
15 oveq1 7438 . . . . . . . . . . 11 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615oveq1d 7446 . . . . . . . . . 10 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1716breq2d 5155 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑄 𝑄) 𝑅)))
1817notbid 318 . . . . . . . 8 (𝑃 = 𝑄 → (¬ 𝑣 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑄 𝑄) 𝑅)))
1918biimparc 479 . . . . . . 7 ((¬ 𝑣 ((𝑄 𝑄) 𝑅) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
2014, 19sylan 580 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
21 breq1 5146 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑃 𝑄) 𝑅)))
2221notbid 318 . . . . . . 7 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑅)))
2322rspcev 3622 . . . . . 6 ((𝑣𝐴 ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
246, 20, 23syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
25 simp2l 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑣𝐴)
2625ad2antrr 726 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → 𝑣𝐴)
277ad2antrr 726 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 (𝑄 𝑅))
281, 3hlatjass 39371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
29283ad2ant1 1134 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
3029ad2antrr 726 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
318hllatd 39365 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ Lat)
32 simp1r1 1270 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃𝐴)
33 eqid 2737 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
3433, 3atbase 39290 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃 ∈ (Base‘𝐾))
36 simp1r3 1272 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑅𝐴)
3733, 1, 3hlatjcl 39368 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
388, 9, 36, 37syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑅) ∈ (Base‘𝐾))
3931, 35, 383jca 1129 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4039adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4133, 2, 1latleeqj1 18496 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4240, 41syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4342biimpa 476 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 (𝑄 𝑅)) = (𝑄 𝑅))
4430, 43eqtrd 2777 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
4544breq2d 5155 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
4627, 45mtbird 325 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
4726, 46, 23syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
48 simpl2r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑤𝐴)
4948ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑤𝐴)
508, 32, 93jca 1129 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5150ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5236, 25jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑅𝐴𝑣𝐴))
5352ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
54 simpl3r 1230 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
5554ad2antrr 726 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
56 simplr 769 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
57 simpr 484 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑃 ((𝑄 𝑅) 𝑣))
581, 2, 33dimlem3a 39462 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑤 ((𝑄 𝑅) 𝑣) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
5951, 53, 55, 56, 57, 58syl113anc 1384 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
60 breq1 5146 . . . . . . . . . 10 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑤 ((𝑃 𝑄) 𝑅)))
6160notbid 318 . . . . . . . . 9 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑅)))
6261rspcev 3622 . . . . . . . 8 ((𝑤𝐴 ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
6349, 59, 62syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
64 simpl2l 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑣𝐴)
6564ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑣𝐴)
6650ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6752ad3antrrr 730 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
68 simpl3l 1229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑣 (𝑄 𝑅))
6968ad2antrr 726 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 (𝑄 𝑅))
70 simplr 769 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
71 simpr 484 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 ((𝑄 𝑅) 𝑣))
721, 2, 33dimlem4a 39465 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7366, 67, 69, 70, 71, 72syl113anc 1384 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7465, 73, 23syl2anc 584 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7563, 74pm2.61dan 813 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7647, 75pm2.61dan 813 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7724, 76pm2.61dane 3029 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
78773exp 1120 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑣𝐴𝑤𝐴) → ((¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))))
7978rexlimdvv 3212 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅)))
805, 79mpd 15 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Latclat 18476  Atomscatm 39264  HLchlt 39351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352
This theorem is referenced by:  lvolex3N  39540  dalem18  39683  dvh4dimat  41440
  Copyright terms: Public domain W3C validator