Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnexOLDN Structured version   Visualization version   GIF version

Theorem atbtwnexOLDN 38972
Description: There exists a 3rd atom π‘Ÿ on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃, such that π‘Ÿ is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atbtwn.b 𝐡 = (Baseβ€˜πΎ)
atbtwn.l ≀ = (leβ€˜πΎ)
atbtwn.j ∨ = (joinβ€˜πΎ)
atbtwn.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atbtwnexOLDN (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑋,π‘Ÿ
Allowed substitution hint:   ∨ (π‘Ÿ)

Proof of Theorem atbtwnexOLDN
StepHypRef Expression
1 simpr2 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ 𝑋)
2 simpr3 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ Β¬ 𝑄 ≀ 𝑋)
3 nbrne2 5164 . . . 4 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑃 β‰  𝑄)
41, 2, 3syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
5 atbtwn.l . . . 4 ≀ = (leβ€˜πΎ)
6 atbtwn.j . . . 4 ∨ = (joinβ€˜πΎ)
7 atbtwn.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7hlsupr 38911 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
94, 8syldan 589 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
10 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ β‰  𝑄)
11 simp31 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ β‰  𝑃)
12 simp1l 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
13 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ ∈ 𝐴)
14 simp1r1 1266 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑋 ∈ 𝐡)
15 simp1r2 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ 𝑋)
16 simp1r3 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑄 ≀ 𝑋)
17 simp33 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑄))
18 atbtwn.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
1918, 5, 6, 7atbtwn 38971 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑃 ↔ Β¬ π‘Ÿ ≀ 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑃 ↔ Β¬ π‘Ÿ ≀ 𝑋))
2111, 20mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ π‘Ÿ ≀ 𝑋)
2210, 21, 173jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
23223exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)) β†’ (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))))
2423reximdvai 3155 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
259, 24mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  Atomscatm 38787  HLchlt 38874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-lat 18418  df-clat 18485  df-oposet 38700  df-ol 38702  df-oml 38703  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator