Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnexOLDN Structured version   Visualization version   GIF version

Theorem atbtwnexOLDN 38774
Description: There exists a 3rd atom 𝑟 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwnexOLDN (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem atbtwnexOLDN
StepHypRef Expression
1 simpr2 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
2 simpr3 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
3 nbrne2 5158 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
41, 2, 3syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
5 atbtwn.l . . . 4 = (le‘𝐾)
6 atbtwn.j . . . 4 = (join‘𝐾)
7 atbtwn.a . . . 4 𝐴 = (Atoms‘𝐾)
85, 6, 7hlsupr 38713 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
94, 8syldan 590 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
10 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑄)
11 simp31 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑃)
12 simp1l 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝐴)
14 simp1r1 1266 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑋𝐵)
15 simp1r2 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 𝑋)
16 simp1r3 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑄 𝑋)
17 simp33 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟 (𝑃 𝑄))
18 atbtwn.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1918, 5, 6, 7atbtwn 38773 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2111, 20mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑟 𝑋)
2210, 21, 173jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
23223exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))))
2423reximdvai 3157 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄))))
259, 24mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wrex 3062   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  Atomscatm 38589  HLchlt 38676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator