Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnexOLDN Structured version   Visualization version   GIF version

Theorem atbtwnexOLDN 35403
Description: There exists a 3rd atom 𝑟 on a line 𝑃 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwnexOLDN (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem atbtwnexOLDN
StepHypRef Expression
1 simpr2 1250 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
2 simpr3 1252 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
3 nbrne2 4829 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
41, 2, 3syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
5 atbtwn.l . . . 4 = (le‘𝐾)
6 atbtwn.j . . . 4 = (join‘𝐾)
7 atbtwn.a . . . 4 𝐴 = (Atoms‘𝐾)
85, 6, 7hlsupr 35342 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
94, 8syldan 585 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
10 simp32 1267 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑄)
11 simp31 1266 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑃)
12 simp1l 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13 simp2 1167 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝐴)
14 simp1r1 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑋𝐵)
15 simp1r2 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 𝑋)
16 simp1r3 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑄 𝑋)
17 simp33 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟 (𝑃 𝑄))
18 atbtwn.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1918, 5, 6, 7atbtwn 35402 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1506 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2111, 20mpbid 223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑟 𝑋)
2210, 21, 173jca 1158 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
23223exp 1148 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))))
2423reximdvai 3161 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄))))
259, 24mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16130  lecple 16221  joincjn 17210  Atomscatm 35219  HLchlt 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator