Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnex Structured version   Visualization version   GIF version

Theorem atbtwnex 38314
Description: Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom π‘Ÿ not in 𝑋 such that the line 𝑄 ∨ π‘Ÿ intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐡 = (Baseβ€˜πΎ)
atbtwn.l ≀ = (leβ€˜πΎ)
atbtwn.j ∨ = (joinβ€˜πΎ)
atbtwn.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atbtwnex (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑋,π‘Ÿ
Allowed substitution hint:   ∨ (π‘Ÿ)

Proof of Theorem atbtwnex
StepHypRef Expression
1 simpr2 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ 𝑋)
2 simpr3 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ Β¬ 𝑄 ≀ 𝑋)
3 nbrne2 5168 . . . 4 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑃 β‰  𝑄)
41, 2, 3syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
5 atbtwn.l . . . 4 ≀ = (leβ€˜πΎ)
6 atbtwn.j . . . 4 ∨ = (joinβ€˜πΎ)
7 atbtwn.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7hlsupr 38252 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
94, 8syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
10 simp32 1210 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ β‰  𝑄)
11 simp31 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ β‰  𝑃)
12 simp1l 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
13 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ ∈ 𝐴)
14 simp1r1 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑋 ∈ 𝐡)
15 simp1r2 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ 𝑋)
16 simp1r3 1271 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑄 ≀ 𝑋)
17 simp33 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑄))
18 atbtwn.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
1918, 5, 6, 7atbtwn 38312 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑃 ↔ Β¬ π‘Ÿ ≀ 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1387 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑃 ↔ Β¬ π‘Ÿ ≀ 𝑋))
2111, 20mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ π‘Ÿ ≀ 𝑋)
22 simp1l1 1266 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
23 simp1l2 1267 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
24 simp1l3 1268 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
255, 6, 7hlatexch2 38262 . . . . . . . 8 ((𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑄) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ 𝑃 ≀ (π‘Ÿ ∨ 𝑄)))
2622, 13, 23, 24, 10, 25syl131anc 1383 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) β†’ 𝑃 ≀ (π‘Ÿ ∨ 𝑄)))
2717, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))
286, 7hlatjcom 38233 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
2922, 24, 13, 28syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
3027, 29breqtrrd 5176 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ≀ (𝑄 ∨ π‘Ÿ))
3110, 21, 303jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)))
32313exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)) β†’ (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)))))
3332reximdvai 3165 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ))))
349, 33mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑄 ∧ Β¬ π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  Atomscatm 38128  HLchlt 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216
This theorem is referenced by:  dalem19  38548
  Copyright terms: Public domain W3C validator