Proof of Theorem atbtwnex
| Step | Hyp | Ref
| Expression |
| 1 | | simpr2 1196 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑃 ≤ 𝑋) |
| 2 | | simpr3 1197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ¬ 𝑄 ≤ 𝑋) |
| 3 | | nbrne2 5163 |
. . . 4
⊢ ((𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋) → 𝑃 ≠ 𝑄) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑃 ≠ 𝑄) |
| 5 | | atbtwn.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 6 | | atbtwn.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 7 | | atbtwn.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | 5, 6, 7 | hlsupr 39388 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
| 9 | 4, 8 | syldan 591 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
| 10 | | simp32 1211 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑟 ≠ 𝑄) |
| 11 | | simp31 1210 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑟 ≠ 𝑃) |
| 12 | | simp1l 1198 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 13 | | simp2 1138 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑟 ∈ 𝐴) |
| 14 | | simp1r1 1270 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐵) |
| 15 | | simp1r2 1271 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ 𝑋) |
| 16 | | simp1r3 1272 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ 𝑋) |
| 17 | | simp33 1212 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑟 ≤ (𝑃 ∨ 𝑄)) |
| 18 | | atbtwn.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
| 19 | 18, 5, 6, 7 | atbtwn 39448 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝑟 ≠ 𝑃 ↔ ¬ 𝑟 ≤ 𝑋)) |
| 20 | 12, 13, 14, 15, 16, 17, 19 | syl123anc 1389 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝑟 ≠ 𝑃 ↔ ¬ 𝑟 ≤ 𝑋)) |
| 21 | 11, 20 | mpbid 232 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑟 ≤ 𝑋) |
| 22 | | simp1l1 1267 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
| 23 | | simp1l2 1268 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
| 24 | | simp1l3 1269 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
| 25 | 5, 6, 7 | hlatexch2 39398 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ≠ 𝑄) → (𝑟 ≤ (𝑃 ∨ 𝑄) → 𝑃 ≤ (𝑟 ∨ 𝑄))) |
| 26 | 22, 13, 23, 24, 10, 25 | syl131anc 1385 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝑟 ≤ (𝑃 ∨ 𝑄) → 𝑃 ≤ (𝑟 ∨ 𝑄))) |
| 27 | 17, 26 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ (𝑟 ∨ 𝑄)) |
| 28 | 6, 7 | hlatjcom 39369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 29 | 22, 24, 13, 28 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 30 | 27, 29 | breqtrrd 5171 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ (𝑄 ∨ 𝑟)) |
| 31 | 10, 21, 30 | 3jca 1129 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) → (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 32 | 31 | 3exp 1120 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → (𝑟 ∈ 𝐴 → ((𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄)) → (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 33 | 32 | reximdvai 3165 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → (∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 34 | 9, 33 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |