Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnex Structured version   Visualization version   GIF version

Theorem atbtwnex 39442
Description: Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwnex (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem atbtwnex
StepHypRef Expression
1 simpr2 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
2 simpr3 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
3 nbrne2 5127 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
41, 2, 3syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
5 atbtwn.l . . . 4 = (le‘𝐾)
6 atbtwn.j . . . 4 = (join‘𝐾)
7 atbtwn.a . . . 4 𝐴 = (Atoms‘𝐾)
85, 6, 7hlsupr 39380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
94, 8syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
10 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑄)
11 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑃)
12 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝐴)
14 simp1r1 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑋𝐵)
15 simp1r2 1271 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 𝑋)
16 simp1r3 1272 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑄 𝑋)
17 simp33 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟 (𝑃 𝑄))
18 atbtwn.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1918, 5, 6, 7atbtwn 39440 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1389 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2111, 20mpbid 232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑟 𝑋)
22 simp1l1 1267 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝐾 ∈ HL)
23 simp1l2 1268 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃𝐴)
24 simp1l3 1269 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑄𝐴)
255, 6, 7hlatexch2 39390 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑃𝐴𝑄𝐴) ∧ 𝑟𝑄) → (𝑟 (𝑃 𝑄) → 𝑃 (𝑟 𝑄)))
2622, 13, 23, 24, 10, 25syl131anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟 (𝑃 𝑄) → 𝑃 (𝑟 𝑄)))
2717, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 (𝑟 𝑄))
286, 7hlatjcom 39361 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → (𝑄 𝑟) = (𝑟 𝑄))
2922, 24, 13, 28syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑄 𝑟) = (𝑟 𝑄))
3027, 29breqtrrd 5135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 (𝑄 𝑟))
3110, 21, 303jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
32313exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))))
3332reximdvai 3144 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟))))
349, 33mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  dalem19  39676
  Copyright terms: Public domain W3C validator