MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r3 Structured version   Visualization version   GIF version

Theorem simp1r3 1271
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r3 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1r3
StepHypRef Expression
1 simpr3 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  hash7g  14535  lshpkrlem6  39071  atbtwnexOLDN  39404  atbtwnex  39405  3dim3  39426  3atlem5  39444  lplnle  39497  4atlem11  39566  4atexlem7  40032  cdleme22b  40298  stoweidlem60  45981
  Copyright terms: Public domain W3C validator