Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22b Structured version   Visualization version   GIF version

Theorem cdleme22b 38282
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ t p q. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22b (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))

Proof of Theorem cdleme22b
StepHypRef Expression
1 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp1r1 1267 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝐴)
3 simp1r2 1268 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp1r3 1269 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝑇)
5 cdleme22.j . . . . . . 7 = (join‘𝐾)
6 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 eqid 2738 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
85, 6, 7llni2 37453 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
91, 2, 3, 4, 8syl31anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (LLines‘𝐾))
106, 7llnneat 37455 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → ¬ (𝑆 𝑇) ∈ 𝐴)
111, 9, 10syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ (𝑆 𝑇) ∈ 𝐴)
12 eqid 2738 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 7llnn0 37457 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (𝑆 𝑇) ≠ (0.‘𝐾))
141, 9, 13syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ≠ (0.‘𝐾))
1511, 14jca 511 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)))
16 df-ne 2943 . . . . 5 ((𝑆 𝑇) ≠ (0.‘𝐾) ↔ ¬ (𝑆 𝑇) = (0.‘𝐾))
1716anbi2i 622 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ (¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)))
18 pm4.56 985 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
1917, 18bitri 274 . . 3 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
2015, 19sylib 217 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
21 simp3r2 1280 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑇 𝑉))
22 simp3l 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑉𝐴)
23 cdleme22.l . . . . . . . . 9 = (le‘𝐾)
2423, 5, 6hlatlej1 37316 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → 𝑇 (𝑇 𝑉))
251, 3, 22, 24syl3anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 (𝑇 𝑉))
261hllatd 37305 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ Lat)
27 eqid 2738 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2827, 6atbase 37230 . . . . . . . . 9 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
292, 28syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 ∈ (Base‘𝐾))
3027, 6atbase 37230 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 ∈ (Base‘𝐾))
3227, 5, 6hlatjcl 37308 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → (𝑇 𝑉) ∈ (Base‘𝐾))
331, 3, 22, 32syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ∈ (Base‘𝐾))
3427, 23, 5latjle12 18083 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3526, 29, 31, 33, 34syl13anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3621, 25, 35mpbi2and 708 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) (𝑇 𝑉))
3736adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑇 𝑉))
38 simp3r3 1281 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
3938adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
40 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑇 (𝑃 𝑄))
41 simp21 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑃𝐴)
42 simp22 1205 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑄𝐴)
4327, 5, 6hlatjcl 37308 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
441, 41, 42, 43syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4527, 23, 5latjle12 18083 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4626, 29, 31, 44, 45syl13anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4746adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4839, 40, 47mpbi2and 708 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑃 𝑄))
4927, 5, 6hlatjcl 37308 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
501, 2, 3, 49syl3anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
51 cdleme22.m . . . . . . . 8 = (meet‘𝐾)
5227, 23, 51latlem12 18099 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5326, 50, 33, 44, 52syl13anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5453adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5537, 48, 54mpbi2and 708 . . . 4 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
5655ex 412 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
57 hlop 37303 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
581, 57syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ OP)
5958adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → 𝐾 ∈ OP)
6050adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
61 simprl 767 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴)
62 simprr 769 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
6327, 23, 12, 6leat3 37236 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6459, 60, 61, 62, 63syl31anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6564exp32 420 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
66 breq2 5074 . . . . . . . . 9 (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) ↔ (𝑆 𝑇) (0.‘𝐾)))
6766biimpa 476 . . . . . . . 8 ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) (0.‘𝐾))
6827, 23, 12ople0 37128 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
6958, 50, 68syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
7067, 69syl5ib 243 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) = (0.‘𝐾)))
7170imp 406 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) = (0.‘𝐾))
7271olcd 870 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
7372exp32 420 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
74 simp3r1 1279 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
755, 51, 12, 62atmat0 37467 . . . . 5 (((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
761, 3, 22, 41, 42, 74, 75syl33anc 1383 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
7765, 73, 76mpjaod 856 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7856, 77syld 47 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7920, 78mtod 197 1 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  0.cp0 18056  Latclat 18064  OPcops 37113  Atomscatm 37204  HLchlt 37291  LLinesclln 37432  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439
This theorem is referenced by:  cdleme22cN  38283  cdleme27a  38308
  Copyright terms: Public domain W3C validator