Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22b Structured version   Visualization version   GIF version

Theorem cdleme22b 37637
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ t p q. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22b (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))

Proof of Theorem cdleme22b
StepHypRef Expression
1 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp1r1 1266 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝐴)
3 simp1r2 1267 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp1r3 1268 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝑇)
5 cdleme22.j . . . . . . 7 = (join‘𝐾)
6 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 eqid 2798 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
85, 6, 7llni2 36808 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
91, 2, 3, 4, 8syl31anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (LLines‘𝐾))
106, 7llnneat 36810 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → ¬ (𝑆 𝑇) ∈ 𝐴)
111, 9, 10syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ (𝑆 𝑇) ∈ 𝐴)
12 eqid 2798 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 7llnn0 36812 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (𝑆 𝑇) ≠ (0.‘𝐾))
141, 9, 13syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ≠ (0.‘𝐾))
1511, 14jca 515 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)))
16 df-ne 2988 . . . . 5 ((𝑆 𝑇) ≠ (0.‘𝐾) ↔ ¬ (𝑆 𝑇) = (0.‘𝐾))
1716anbi2i 625 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ (¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)))
18 pm4.56 986 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
1917, 18bitri 278 . . 3 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
2015, 19sylib 221 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
21 simp3r2 1279 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑇 𝑉))
22 simp3l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑉𝐴)
23 cdleme22.l . . . . . . . . 9 = (le‘𝐾)
2423, 5, 6hlatlej1 36671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → 𝑇 (𝑇 𝑉))
251, 3, 22, 24syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 (𝑇 𝑉))
261hllatd 36660 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ Lat)
27 eqid 2798 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2827, 6atbase 36585 . . . . . . . . 9 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
292, 28syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 ∈ (Base‘𝐾))
3027, 6atbase 36585 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 ∈ (Base‘𝐾))
3227, 5, 6hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → (𝑇 𝑉) ∈ (Base‘𝐾))
331, 3, 22, 32syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ∈ (Base‘𝐾))
3427, 23, 5latjle12 17664 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3526, 29, 31, 33, 34syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3621, 25, 35mpbi2and 711 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) (𝑇 𝑉))
3736adantr 484 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑇 𝑉))
38 simp3r3 1280 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
3938adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
40 simpr 488 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑇 (𝑃 𝑄))
41 simp21 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑃𝐴)
42 simp22 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑄𝐴)
4327, 5, 6hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
441, 41, 42, 43syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4527, 23, 5latjle12 17664 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4626, 29, 31, 44, 45syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4746adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4839, 40, 47mpbi2and 711 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑃 𝑄))
4927, 5, 6hlatjcl 36663 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
501, 2, 3, 49syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
51 cdleme22.m . . . . . . . 8 = (meet‘𝐾)
5227, 23, 51latlem12 17680 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5326, 50, 33, 44, 52syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5453adantr 484 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5537, 48, 54mpbi2and 711 . . . 4 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
5655ex 416 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
57 hlop 36658 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
581, 57syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ OP)
5958adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → 𝐾 ∈ OP)
6050adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
61 simprl 770 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴)
62 simprr 772 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
6327, 23, 12, 6leat3 36591 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6459, 60, 61, 62, 63syl31anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6564exp32 424 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
66 breq2 5034 . . . . . . . . 9 (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) ↔ (𝑆 𝑇) (0.‘𝐾)))
6766biimpa 480 . . . . . . . 8 ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) (0.‘𝐾))
6827, 23, 12ople0 36483 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
6958, 50, 68syl2anc 587 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
7067, 69syl5ib 247 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) = (0.‘𝐾)))
7170imp 410 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) = (0.‘𝐾))
7271olcd 871 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
7372exp32 424 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
74 simp3r1 1278 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
755, 51, 12, 62atmat0 36822 . . . . 5 (((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
761, 3, 22, 41, 42, 74, 75syl33anc 1382 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
7765, 73, 76mpjaod 857 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7856, 77syld 47 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7920, 78mtod 201 1 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  0.cp0 17639  Latclat 17647  OPcops 36468  Atomscatm 36559  HLchlt 36646  LLinesclln 36787  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794
This theorem is referenced by:  cdleme22cN  37638  cdleme27a  37663
  Copyright terms: Public domain W3C validator