Proof of Theorem cdleme22b
Step | Hyp | Ref
| Expression |
1 | | simp1l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ HL) |
2 | | simp1r1 1270 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ∈ 𝐴) |
3 | | simp1r2 1271 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑇 ∈ 𝐴) |
4 | | simp1r3 1272 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≠ 𝑇) |
5 | | cdleme22.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
6 | | cdleme22.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
8 | 5, 6, 7 | llni2 37149 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑆 ≠ 𝑇) → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
9 | 1, 2, 3, 4, 8 | syl31anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
10 | 6, 7 | llnneat 37151 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) → ¬ (𝑆 ∨ 𝑇) ∈ 𝐴) |
11 | 1, 9, 10 | syl2anc 587 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ¬ (𝑆 ∨ 𝑇) ∈ 𝐴) |
12 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
13 | 12, 7 | llnn0 37153 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) → (𝑆 ∨ 𝑇) ≠ (0.‘𝐾)) |
14 | 1, 9, 13 | syl2anc 587 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ≠ (0.‘𝐾)) |
15 | 11, 14 | jca 515 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (¬ (𝑆 ∨ 𝑇) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≠ (0.‘𝐾))) |
16 | | df-ne 2935 |
. . . . 5
⊢ ((𝑆 ∨ 𝑇) ≠ (0.‘𝐾) ↔ ¬ (𝑆 ∨ 𝑇) = (0.‘𝐾)) |
17 | 16 | anbi2i 626 |
. . . 4
⊢ ((¬
(𝑆 ∨ 𝑇) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≠ (0.‘𝐾)) ↔ (¬ (𝑆 ∨ 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
18 | | pm4.56 988 |
. . . 4
⊢ ((¬
(𝑆 ∨ 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 ∨ 𝑇) = (0.‘𝐾)) ↔ ¬ ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
19 | 17, 18 | bitri 278 |
. . 3
⊢ ((¬
(𝑆 ∨ 𝑇) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≠ (0.‘𝐾)) ↔ ¬ ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
20 | 15, 19 | sylib 221 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ¬ ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
21 | | simp3r2 1283 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≤ (𝑇 ∨ 𝑉)) |
22 | | simp3l 1202 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑉 ∈ 𝐴) |
23 | | cdleme22.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
24 | 23, 5, 6 | hlatlej1 37012 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → 𝑇 ≤ (𝑇 ∨ 𝑉)) |
25 | 1, 3, 22, 24 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑇 ≤ (𝑇 ∨ 𝑉)) |
26 | 1 | hllatd 37001 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ Lat) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
28 | 27, 6 | atbase 36926 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
29 | 2, 28 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ∈ (Base‘𝐾)) |
30 | 27, 6 | atbase 36926 |
. . . . . . . . 9
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
31 | 3, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑇 ∈ (Base‘𝐾)) |
32 | 27, 5, 6 | hlatjcl 37004 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑇 ∨ 𝑉) ∈ (Base‘𝐾)) |
33 | 1, 3, 22, 32 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑇 ∨ 𝑉) ∈ (Base‘𝐾)) |
34 | 27, 23, 5 | latjle12 17788 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑇 ≤ (𝑇 ∨ 𝑉)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉))) |
35 | 26, 29, 31, 33, 34 | syl13anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑇 ≤ (𝑇 ∨ 𝑉)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉))) |
36 | 21, 25, 35 | mpbi2and 712 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉)) |
37 | 36 | adantr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉)) |
38 | | simp3r3 1284 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
39 | 38 | adantr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
40 | | simpr 488 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) |
41 | | simp21 1207 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ 𝐴) |
42 | | simp22 1208 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ 𝐴) |
43 | 27, 5, 6 | hlatjcl 37004 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
44 | 1, 41, 42, 43 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
45 | 27, 23, 5 | latjle12 17788 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄))) |
46 | 26, 29, 31, 44, 45 | syl13anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄))) |
47 | 46 | adantr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄))) |
48 | 39, 40, 47 | mpbi2and 712 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄)) |
49 | 27, 5, 6 | hlatjcl 37004 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
50 | 1, 2, 3, 49 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
51 | | cdleme22.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
52 | 27, 23, 51 | latlem12 17804 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (((𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉) ∧ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) |
53 | 26, 50, 33, 44, 52 | syl13anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (((𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉) ∧ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) |
54 | 53 | adantr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (((𝑆 ∨ 𝑇) ≤ (𝑇 ∨ 𝑉) ∧ (𝑆 ∨ 𝑇) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) |
55 | 37, 48, 54 | mpbi2and 712 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) |
56 | 55 | ex 416 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑇 ≤ (𝑃 ∨ 𝑄) → (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) |
57 | | hlop 36999 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
58 | 1, 57 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ OP) |
59 | 58 | adantr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ OP) |
60 | 50 | adantr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
61 | | simprl 771 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
62 | | simprr 773 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) |
63 | 27, 23, 12, 6 | leat3 36932 |
. . . . . 6
⊢ (((𝐾 ∈ OP ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
64 | 59, 60, 61, 62, 63 | syl31anc 1374 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
65 | 64 | exp32 424 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 → ((𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))))) |
66 | | breq2 5034 |
. . . . . . . . 9
⊢ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) → ((𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ↔ (𝑆 ∨ 𝑇) ≤ (0.‘𝐾))) |
67 | 66 | biimpa 480 |
. . . . . . . 8
⊢ ((((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) → (𝑆 ∨ 𝑇) ≤ (0.‘𝐾)) |
68 | 27, 23, 12 | ople0 36824 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OP ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑆 ∨ 𝑇) ≤ (0.‘𝐾) ↔ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
69 | 58, 50, 68 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑇) ≤ (0.‘𝐾) ↔ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
70 | 67, 69 | syl5ib 247 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) → (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
71 | 70 | imp 410 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑇) = (0.‘𝐾)) |
72 | 71 | olcd 873 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) ∧ (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))) |
73 | 72 | exp32 424 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾) → ((𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾))))) |
74 | | simp3r1 1282 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) |
75 | 5, 51, 12, 6 | 2atmat0 37163 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∨ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾))) |
76 | 1, 3, 22, 41, 42, 74, 75 | syl33anc 1386 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴 ∨ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾))) |
77 | 65, 73, 76 | mpjaod 859 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑇) ≤ ((𝑇 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾)))) |
78 | 56, 77 | syld 47 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → (𝑇 ≤ (𝑃 ∨ 𝑄) → ((𝑆 ∨ 𝑇) ∈ 𝐴 ∨ (𝑆 ∨ 𝑇) = (0.‘𝐾)))) |
79 | 20, 78 | mtod 201 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |