Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22b Structured version   Visualization version   GIF version

Theorem cdleme22b 40365
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ t p q. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22b (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))

Proof of Theorem cdleme22b
StepHypRef Expression
1 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp1r1 1270 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝐴)
3 simp1r2 1271 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp1r3 1272 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆𝑇)
5 cdleme22.j . . . . . . 7 = (join‘𝐾)
6 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 eqid 2736 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
85, 6, 7llni2 39536 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
91, 2, 3, 4, 8syl31anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (LLines‘𝐾))
106, 7llnneat 39538 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → ¬ (𝑆 𝑇) ∈ 𝐴)
111, 9, 10syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ (𝑆 𝑇) ∈ 𝐴)
12 eqid 2736 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 7llnn0 39540 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (𝑆 𝑇) ≠ (0.‘𝐾))
141, 9, 13syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ≠ (0.‘𝐾))
1511, 14jca 511 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)))
16 df-ne 2934 . . . . 5 ((𝑆 𝑇) ≠ (0.‘𝐾) ↔ ¬ (𝑆 𝑇) = (0.‘𝐾))
1716anbi2i 623 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ (¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)))
18 pm4.56 990 . . . 4 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ ¬ (𝑆 𝑇) = (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
1917, 18bitri 275 . . 3 ((¬ (𝑆 𝑇) ∈ 𝐴 ∧ (𝑆 𝑇) ≠ (0.‘𝐾)) ↔ ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
2015, 19sylib 218 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
21 simp3r2 1283 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑇 𝑉))
22 simp3l 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑉𝐴)
23 cdleme22.l . . . . . . . . 9 = (le‘𝐾)
2423, 5, 6hlatlej1 39398 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → 𝑇 (𝑇 𝑉))
251, 3, 22, 24syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 (𝑇 𝑉))
261hllatd 39387 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ Lat)
27 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2827, 6atbase 39312 . . . . . . . . 9 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
292, 28syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 ∈ (Base‘𝐾))
3027, 6atbase 39312 . . . . . . . . 9 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑇 ∈ (Base‘𝐾))
3227, 5, 6hlatjcl 39390 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → (𝑇 𝑉) ∈ (Base‘𝐾))
331, 3, 22, 32syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ∈ (Base‘𝐾))
3427, 23, 5latjle12 18465 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3526, 29, 31, 33, 34syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
3621, 25, 35mpbi2and 712 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) (𝑇 𝑉))
3736adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑇 𝑉))
38 simp3r3 1284 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
3938adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
40 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → 𝑇 (𝑃 𝑄))
41 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑃𝐴)
42 simp22 1208 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝑄𝐴)
4327, 5, 6hlatjcl 39390 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
441, 41, 42, 43syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4527, 23, 5latjle12 18465 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4626, 29, 31, 44, 45syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4746adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → ((𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ↔ (𝑆 𝑇) (𝑃 𝑄)))
4839, 40, 47mpbi2and 712 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) (𝑃 𝑄))
4927, 5, 6hlatjcl 39390 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
501, 2, 3, 49syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
51 cdleme22.m . . . . . . . 8 = (meet‘𝐾)
5227, 23, 51latlem12 18481 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5326, 50, 33, 44, 52syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5453adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (((𝑆 𝑇) (𝑇 𝑉) ∧ (𝑆 𝑇) (𝑃 𝑄)) ↔ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
5537, 48, 54mpbi2and 712 . . . 4 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ 𝑇 (𝑃 𝑄)) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
5655ex 412 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))))
57 hlop 39385 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
581, 57syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → 𝐾 ∈ OP)
5958adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → 𝐾 ∈ OP)
6050adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ∈ (Base‘𝐾))
61 simprl 770 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴)
62 simprr 772 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))
6327, 23, 12, 6leat3 39318 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ ((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6459, 60, 61, 62, 63syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
6564exp32 420 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
66 breq2 5128 . . . . . . . . 9 (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) ↔ (𝑆 𝑇) (0.‘𝐾)))
6766biimpa 476 . . . . . . . 8 ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) (0.‘𝐾))
6827, 23, 12ople0 39210 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
6958, 50, 68syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) (0.‘𝐾) ↔ (𝑆 𝑇) = (0.‘𝐾)))
7067, 69imbitrid 244 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄))) → (𝑆 𝑇) = (0.‘𝐾)))
7170imp 406 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → (𝑆 𝑇) = (0.‘𝐾))
7271olcd 874 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) ∧ (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) ∧ (𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)))) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))
7372exp32 420 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾)))))
74 simp3r1 1282 . . . . 5 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
755, 51, 12, 62atmat0 39550 . . . . 5 (((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
761, 3, 22, 41, 42, 74, 75syl33anc 1387 . . . 4 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (((𝑇 𝑉) (𝑃 𝑄)) ∈ 𝐴 ∨ ((𝑇 𝑉) (𝑃 𝑄)) = (0.‘𝐾)))
7765, 73, 76mpjaod 860 . . 3 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑆 𝑇) ((𝑇 𝑉) (𝑃 𝑄)) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7856, 77syld 47 . 2 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → (𝑇 (𝑃 𝑄) → ((𝑆 𝑇) ∈ 𝐴 ∨ (𝑆 𝑇) = (0.‘𝐾))))
7920, 78mtod 198 1 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  meetcmee 18329  0.cp0 18438  Latclat 18446  OPcops 39195  Atomscatm 39286  HLchlt 39373  LLinesclln 39515  LHypclh 40008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522
This theorem is referenced by:  cdleme22cN  40366  cdleme27a  40391
  Copyright terms: Public domain W3C validator