Proof of Theorem 4atlem11
Step | Hyp | Ref
| Expression |
1 | | 3anass 1093 |
. . . 4
⊢ ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
2 | | simpl11 1246 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
3 | 2 | hllatd 37305 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
4 | | simpl2l 1224 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
5 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | 4at.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | atbase 37230 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
8 | 4, 7 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) |
9 | | simpl2r 1225 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
10 | 5, 6 | atbase 37230 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) |
12 | | simpl12 1247 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
13 | | simpl31 1252 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑈 ∈ 𝐴) |
14 | | 4at.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
15 | 5, 14, 6 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
16 | 2, 12, 13, 15 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
17 | | simpl32 1253 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
18 | | simpl33 1254 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑊 ∈ 𝐴) |
19 | 5, 14, 6 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
20 | 2, 17, 18, 19 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
21 | 5, 14 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
22 | 3, 16, 20, 21 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
23 | | 4at.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
24 | 5, 23, 14 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
25 | 3, 8, 11, 22, 24 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
26 | 25 | anbi2d 628 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
27 | 1, 26 | syl5bb 282 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
28 | | simpl13 1248 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
29 | 5, 6 | atbase 37230 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
30 | 28, 29 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ (Base‘𝐾)) |
31 | 5, 14, 6 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
32 | 2, 4, 9, 31 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
33 | 5, 23, 14 | latjle12 18083 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
34 | 3, 30, 32, 22, 33 | syl13anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
35 | 27, 34 | bitrd 278 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
36 | | simpl1 1189 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
37 | | simpl2 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
38 | 17, 18 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
39 | | simpr 484 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
40 | 23, 14, 6 | 4atlem3a 37538 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊))) |
41 | 36, 37, 38, 39, 40 | syl31anc 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊))) |
42 | | simp1l 1195 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
43 | | simp1r 1196 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
44 | | simp2 1135 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
45 | | simp3 1136 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
46 | 23, 14, 6 | 4atlem11b 37549 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
47 | 42, 43, 44, 45, 46 | syl121anc 1373 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
48 | 47 | 3exp 1117 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
49 | 2 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝐾 ∈ HL) |
50 | 12 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ∈ 𝐴) |
51 | 28 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ∈ 𝐴) |
52 | 4 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ∈ 𝐴) |
53 | 9 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ∈ 𝐴) |
54 | 14, 6 | hlatj4 37315 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
55 | 49, 50, 51, 52, 53, 54 | syl122anc 1377 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
56 | 49, 50, 52 | 3jca 1126 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
57 | 51, 53 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
58 | | simp1l3 1266 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
59 | | simp1r2 1268 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
60 | 23, 14, 6 | 4atlem0be 37536 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑅) |
61 | 49, 50, 51, 52, 59, 60 | syl131anc 1381 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ≠ 𝑅) |
62 | | simp1r1 1267 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ≠ 𝑄) |
63 | 23, 14, 6 | 4atlem0ae 37535 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
64 | 49, 50, 51, 52, 62, 59, 63 | syl132anc 1386 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
65 | | simp1r3 1269 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
66 | 14, 6 | hlatj32 37313 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
67 | 49, 50, 51, 52, 66 | syl13anc 1370 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
68 | 67 | breq2d 5082 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄))) |
69 | 65, 68 | mtbid 323 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
70 | 61, 64, 69 | 3jca 1126 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄))) |
71 | | simp2 1135 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
72 | | simp32 1208 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
73 | | simp31 1207 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
74 | | simp33 1209 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
75 | 23, 14, 6 | 4atlem11b 37549 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑅 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄)) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
76 | 56, 57, 58, 70, 71, 72, 73, 74, 75 | syl323anc 1398 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
77 | 55, 76 | eqtrd 2778 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
78 | 77 | 3exp 1117 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
79 | 5, 6 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
80 | 12, 79 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) |
81 | 5, 14 | latj4rot 18123 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅))) |
82 | 3, 80, 30, 8, 11, 81 | syl122anc 1377 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅))) |
83 | 14, 6 | hlatjcom 37309 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑆 ∨ 𝑃) = (𝑃 ∨ 𝑆)) |
84 | 2, 9, 12, 83 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∨ 𝑃) = (𝑃 ∨ 𝑆)) |
85 | 84 | oveq1d 7270 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
86 | 82, 85 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
87 | 86 | 3ad2ant1 1131 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
88 | 2, 12, 9 | 3jca 1126 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
89 | 28, 4 | jca 511 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
90 | | simpl3 1191 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
91 | 88, 89, 90 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
92 | 91 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
93 | 23, 14, 6 | 4noncolr1 37396 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) |
94 | 36, 37, 39, 93 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) |
95 | | necom 2996 |
. . . . . . . . . . 11
⊢ (𝑆 ≠ 𝑃 ↔ 𝑃 ≠ 𝑆) |
96 | 95 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ↔ 𝑃 ≠ 𝑆)) |
97 | 84 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≤ (𝑆 ∨ 𝑃) ↔ 𝑄 ≤ (𝑃 ∨ 𝑆))) |
98 | 97 | notbid 317 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ↔ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆))) |
99 | 84 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ∨ 𝑃) ∨ 𝑄) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
100 | 99 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
101 | 100 | notbid 317 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄) ↔ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
102 | 96, 98, 101 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄)) ↔ (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)))) |
103 | 94, 102 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
104 | 103 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
105 | | simp2 1135 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
106 | | simpr3 1194 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
107 | | simpr1 1192 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
108 | | simpr2 1193 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
109 | 106, 107,
108 | 3jca 1126 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
110 | 109 | 3adant2 1129 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
111 | 23, 14, 6 | 4atlem11b 37549 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
112 | 92, 104, 105, 110, 111 | syl121anc 1373 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
113 | 87, 112 | eqtrd 2778 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
114 | 113 | 3exp 1117 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
115 | 48, 78, 114 | 3jaod 1426 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
116 | 41, 115 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
117 | 35, 116 | sylbird 259 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |