Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11 Structured version   Visualization version   GIF version

Theorem 4atlem11 36276
Description: Lemma for 4at 36280. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem11
StepHypRef Expression
1 3anass 1088 . . . 4 ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))))
2 simpl11 1241 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
32hllatd 36031 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
4 simpl2l 1219 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
5 eqid 2795 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
6 4at.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 35956 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
84, 7syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
9 simpl2r 1220 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
105, 6atbase 35956 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
12 simpl12 1242 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
13 simpl31 1247 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 4at.j . . . . . . . . 9 = (join‘𝐾)
155, 14, 6hlatjcl 36034 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
162, 12, 13, 15syl3anc 1364 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑈) ∈ (Base‘𝐾))
17 simpl32 1248 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
18 simpl33 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
195, 14, 6hlatjcl 36034 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
202, 17, 18, 19syl3anc 1364 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
215, 14latjcl 17490 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
223, 16, 20, 21syl3anc 1364 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
23 4at.l . . . . . . 7 = (le‘𝐾)
245, 23, 14latjle12 17501 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
253, 8, 11, 22, 24syl13anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
2625anbi2d 628 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
271, 26syl5bb 284 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
28 simpl13 1243 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
295, 6atbase 35956 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
315, 14, 6hlatjcl 36034 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
322, 4, 9, 31syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
335, 23, 14latjle12 17501 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
343, 30, 32, 22, 33syl13anc 1365 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
3527, 34bitrd 280 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
36 simpl1 1184 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
37 simpl2 1185 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
3817, 18jca 512 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉𝐴𝑊𝐴))
39 simpr 485 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4023, 14, 64atlem3a 36264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
4136, 37, 38, 39, 40syl31anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
42 simp1l 1190 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
43 simp1r 1191 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
44 simp2 1130 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 ((𝑃 𝑉) 𝑊))
45 simp3 1131 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))))
4623, 14, 64atlem11b 36275 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
4742, 43, 44, 45, 46syl121anc 1368 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
48473exp 1112 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
4923ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝐾 ∈ HL)
50123ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝐴)
51283ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄𝐴)
5243ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅𝐴)
5393ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆𝐴)
5414, 6hlatj4 36041 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5549, 50, 51, 52, 53, 54syl122anc 1372 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5649, 50, 523jca 1121 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴))
5751, 53jca 512 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄𝐴𝑆𝐴))
58 simp1l3 1261 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
59 simp1r2 1263 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 (𝑃 𝑄))
6023, 14, 64atlem0be 36262 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑅)
6149, 50, 51, 52, 59, 60syl131anc 1376 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑅)
62 simp1r1 1262 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑄)
6323, 14, 64atlem0ae 36261 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑅))
6449, 50, 51, 52, 62, 59, 63syl132anc 1381 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 (𝑃 𝑅))
65 simp1r3 1264 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
6614, 6hlatj32 36039 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6749, 50, 51, 52, 66syl13anc 1365 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6867breq2d 4974 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ 𝑆 ((𝑃 𝑅) 𝑄)))
6965, 68mtbid 325 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑅) 𝑄))
7061, 64, 693jca 1121 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)))
71 simp2 1130 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑉) 𝑊))
72 simp32 1203 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
73 simp31 1202 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
74 simp33 1204 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
7523, 14, 64atlem11b 36275 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7656, 57, 58, 70, 71, 72, 73, 74, 75syl323anc 1393 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7755, 76eqtrd 2831 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
78773exp 1112 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
795, 6atbase 35956 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
8012, 79syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
815, 14latj4rot 17541 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
823, 80, 30, 8, 11, 81syl122anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
8314, 6hlatjcom 36035 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑃𝐴) → (𝑆 𝑃) = (𝑃 𝑆))
842, 9, 12, 83syl3anc 1364 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑃) = (𝑃 𝑆))
8584oveq1d 7031 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) (𝑄 𝑅)) = ((𝑃 𝑆) (𝑄 𝑅)))
8682, 85eqtrd 2831 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
87863ad2ant1 1126 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
882, 12, 93jca 1121 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴))
8928, 4jca 512 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄𝐴𝑅𝐴))
90 simpl3 1186 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
9188, 89, 903jca 1121 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
92913ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
9323, 14, 64noncolr1 36122 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
9436, 37, 39, 93syl3anc 1364 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
95 necom 3037 . . . . . . . . . . 11 (𝑆𝑃𝑃𝑆)
9695a1i 11 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃𝑃𝑆))
9784breq2d 4974 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄 (𝑆 𝑃) ↔ 𝑄 (𝑃 𝑆)))
9897notbid 319 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 (𝑆 𝑃) ↔ ¬ 𝑄 (𝑃 𝑆)))
9984oveq1d 7031 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) 𝑄) = ((𝑃 𝑆) 𝑄))
10099breq2d 4974 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 ((𝑆 𝑃) 𝑄) ↔ 𝑅 ((𝑃 𝑆) 𝑄)))
101100notbid 319 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑆 𝑃) 𝑄) ↔ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
10296, 98, 1013anbi123d 1428 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)) ↔ (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄))))
10394, 102mpbid 233 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
1041033ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
105 simp2 1130 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑉) 𝑊))
106 simpr3 1189 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
107 simpr1 1187 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
108 simpr2 1188 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
109106, 107, 1083jca 1121 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
1101093adant2 1124 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
11123, 14, 64atlem11b 36275 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) ∧ (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11292, 104, 105, 110, 111syl121anc 1368 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11387, 112eqtrd 2831 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
1141133exp 1112 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11548, 78, 1143jaod 1421 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11641, 115mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
11735, 116sylbird 261 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3o 1079  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  Latclat 17484  Atomscatm 35930  HLchlt 36017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-lplanes 36166  df-lvols 36167
This theorem is referenced by:  4atlem12b  36278
  Copyright terms: Public domain W3C validator