Proof of Theorem 4atlem11
| Step | Hyp | Ref
| Expression |
| 1 | | 3anass 1094 |
. . . 4
⊢ ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 2 | | simpl11 1249 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
| 3 | 2 | hllatd 39387 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
| 4 | | simpl2l 1227 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 6 | | 4at.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | 5, 6 | atbase 39312 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) |
| 9 | | simpl2r 1228 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
| 10 | 5, 6 | atbase 39312 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) |
| 12 | | simpl12 1250 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
| 13 | | simpl31 1255 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑈 ∈ 𝐴) |
| 14 | | 4at.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
| 15 | 5, 14, 6 | hlatjcl 39390 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 16 | 2, 12, 13, 15 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 17 | | simpl32 1256 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
| 18 | | simpl33 1257 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑊 ∈ 𝐴) |
| 19 | 5, 14, 6 | hlatjcl 39390 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
| 20 | 2, 17, 18, 19 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
| 21 | 5, 14 | latjcl 18454 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
| 22 | 3, 16, 20, 21 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
| 23 | | 4at.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 24 | 5, 23, 14 | latjle12 18465 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 25 | 3, 8, 11, 22, 24 | syl13anc 1374 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 26 | 25 | anbi2d 630 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 27 | 1, 26 | bitrid 283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 28 | | simpl13 1251 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
| 29 | 5, 6 | atbase 39312 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 30 | 28, 29 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ (Base‘𝐾)) |
| 31 | 5, 14, 6 | hlatjcl 39390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 32 | 2, 4, 9, 31 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 33 | 5, 23, 14 | latjle12 18465 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 34 | 3, 30, 32, 22, 33 | syl13anc 1374 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 35 | 27, 34 | bitrd 279 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 36 | | simpl1 1192 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 37 | | simpl2 1193 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
| 38 | 17, 18 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
| 39 | | simpr 484 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
| 40 | 23, 14, 6 | 4atlem3a 39621 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊))) |
| 41 | 36, 37, 38, 39, 40 | syl31anc 1375 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊))) |
| 42 | | simp1l 1198 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
| 43 | | simp1r 1199 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
| 44 | | simp2 1137 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
| 45 | | simp3 1138 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 46 | 23, 14, 6 | 4atlem11b 39632 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 47 | 42, 43, 44, 45, 46 | syl121anc 1377 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 48 | 47 | 3exp 1119 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 49 | 2 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝐾 ∈ HL) |
| 50 | 12 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ∈ 𝐴) |
| 51 | 28 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ∈ 𝐴) |
| 52 | 4 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ∈ 𝐴) |
| 53 | 9 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ∈ 𝐴) |
| 54 | 14, 6 | hlatj4 39397 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
| 55 | 49, 50, 51, 52, 53, 54 | syl122anc 1381 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
| 56 | 49, 50, 52 | 3jca 1128 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
| 57 | 51, 53 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
| 58 | | simp1l3 1269 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
| 59 | | simp1r2 1271 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 60 | 23, 14, 6 | 4atlem0be 39619 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑅) |
| 61 | 49, 50, 51, 52, 59, 60 | syl131anc 1385 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ≠ 𝑅) |
| 62 | | simp1r1 1270 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑃 ≠ 𝑄) |
| 63 | 23, 14, 6 | 4atlem0ae 39618 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
| 64 | 49, 50, 51, 52, 62, 59, 63 | syl132anc 1390 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
| 65 | | simp1r3 1272 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 66 | 14, 6 | hlatj32 39395 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
| 67 | 49, 50, 51, 52, 66 | syl13anc 1374 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
| 68 | 67 | breq2d 5136 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄))) |
| 69 | 65, 68 | mtbid 324 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
| 70 | 61, 64, 69 | 3jca 1128 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄))) |
| 71 | | simp2 1137 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
| 72 | | simp32 1211 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 73 | | simp31 1210 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 74 | | simp33 1212 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 75 | 23, 14, 6 | 4atlem11b 39632 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑅 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑄)) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 76 | 56, 57, 58, 70, 71, 72, 73, 74, 75 | syl323anc 1402 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 77 | 55, 76 | eqtrd 2771 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 78 | 77 | 3exp 1119 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 79 | 5, 6 | atbase 39312 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 80 | 12, 79 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) |
| 81 | 5, 14 | latj4rot 18505 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅))) |
| 82 | 3, 80, 30, 8, 11, 81 | syl122anc 1381 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅))) |
| 83 | 14, 6 | hlatjcom 39391 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑆 ∨ 𝑃) = (𝑃 ∨ 𝑆)) |
| 84 | 2, 9, 12, 83 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∨ 𝑃) = (𝑃 ∨ 𝑆)) |
| 85 | 84 | oveq1d 7425 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ∨ 𝑃) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
| 86 | 82, 85 | eqtrd 2771 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
| 87 | 86 | 3ad2ant1 1133 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅))) |
| 88 | 2, 12, 9 | 3jca 1128 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
| 89 | 28, 4 | jca 511 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
| 90 | | simpl3 1194 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) |
| 91 | 88, 89, 90 | 3jca 1128 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
| 92 | 91 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴))) |
| 93 | 23, 14, 6 | 4noncolr1 39479 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) |
| 94 | 36, 37, 39, 93 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) |
| 95 | | necom 2986 |
. . . . . . . . . . 11
⊢ (𝑆 ≠ 𝑃 ↔ 𝑃 ≠ 𝑆) |
| 96 | 95 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ↔ 𝑃 ≠ 𝑆)) |
| 97 | 84 | breq2d 5136 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≤ (𝑆 ∨ 𝑃) ↔ 𝑄 ≤ (𝑃 ∨ 𝑆))) |
| 98 | 97 | notbid 318 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ↔ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆))) |
| 99 | 84 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ∨ 𝑃) ∨ 𝑄) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 100 | 99 | breq2d 5136 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄) ↔ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
| 101 | 100 | notbid 318 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄) ↔ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
| 102 | 96, 98, 101 | 3anbi123d 1438 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄)) ↔ (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)))) |
| 103 | 94, 102 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
| 104 | 103 | 3ad2ant1 1133 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) |
| 105 | | simp2 1137 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) |
| 106 | | simpr3 1197 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 107 | | simpr1 1195 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 108 | | simpr2 1196 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 109 | 106, 107,
108 | 3jca 1128 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 110 | 109 | 3adant2 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 111 | 23, 14, 6 | 4atlem11b 39632 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑆 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) ∧ (𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 112 | 92, 104, 105, 110, 111 | syl121anc 1377 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑅)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 113 | 87, 112 | eqtrd 2771 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∧ (𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
| 114 | 113 | 3exp 1119 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 115 | 48, 78, 114 | 3jaod 1431 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑊)) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))))) |
| 116 | 41, 115 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
| 117 | 35, 116 | sylbird 260 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑄 ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |