Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11 Structured version   Visualization version   GIF version

Theorem 4atlem11 39596
Description: Lemma for 4at 39600. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem11
StepHypRef Expression
1 3anass 1094 . . . 4 ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))))
2 simpl11 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
32hllatd 39350 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
4 simpl2l 1227 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
5 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
6 4at.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 39275 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
84, 7syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
9 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
105, 6atbase 39275 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
12 simpl12 1250 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
13 simpl31 1255 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 4at.j . . . . . . . . 9 = (join‘𝐾)
155, 14, 6hlatjcl 39353 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
162, 12, 13, 15syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑈) ∈ (Base‘𝐾))
17 simpl32 1256 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
18 simpl33 1257 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
195, 14, 6hlatjcl 39353 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
202, 17, 18, 19syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
215, 14latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
223, 16, 20, 21syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
23 4at.l . . . . . . 7 = (le‘𝐾)
245, 23, 14latjle12 18391 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
253, 8, 11, 22, 24syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
2625anbi2d 630 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
271, 26bitrid 283 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
28 simpl13 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
295, 6atbase 39275 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
315, 14, 6hlatjcl 39353 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
322, 4, 9, 31syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
335, 23, 14latjle12 18391 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
343, 30, 32, 22, 33syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
3527, 34bitrd 279 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
36 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
37 simpl2 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
3817, 18jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉𝐴𝑊𝐴))
39 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4023, 14, 64atlem3a 39584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
4136, 37, 38, 39, 40syl31anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
42 simp1l 1198 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
43 simp1r 1199 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
44 simp2 1137 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 ((𝑃 𝑉) 𝑊))
45 simp3 1138 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))))
4623, 14, 64atlem11b 39595 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
4742, 43, 44, 45, 46syl121anc 1377 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
48473exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
4923ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝐾 ∈ HL)
50123ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝐴)
51283ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄𝐴)
5243ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅𝐴)
5393ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆𝐴)
5414, 6hlatj4 39360 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5549, 50, 51, 52, 53, 54syl122anc 1381 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5649, 50, 523jca 1128 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴))
5751, 53jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄𝐴𝑆𝐴))
58 simp1l3 1269 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
59 simp1r2 1271 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 (𝑃 𝑄))
6023, 14, 64atlem0be 39582 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑅)
6149, 50, 51, 52, 59, 60syl131anc 1385 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑅)
62 simp1r1 1270 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑄)
6323, 14, 64atlem0ae 39581 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑅))
6449, 50, 51, 52, 62, 59, 63syl132anc 1390 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 (𝑃 𝑅))
65 simp1r3 1272 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
6614, 6hlatj32 39358 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6749, 50, 51, 52, 66syl13anc 1374 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6867breq2d 5114 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ 𝑆 ((𝑃 𝑅) 𝑄)))
6965, 68mtbid 324 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑅) 𝑄))
7061, 64, 693jca 1128 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)))
71 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑉) 𝑊))
72 simp32 1211 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
73 simp31 1210 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
74 simp33 1212 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
7523, 14, 64atlem11b 39595 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7656, 57, 58, 70, 71, 72, 73, 74, 75syl323anc 1402 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7755, 76eqtrd 2764 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
78773exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
795, 6atbase 39275 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
8012, 79syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
815, 14latj4rot 18431 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
823, 80, 30, 8, 11, 81syl122anc 1381 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
8314, 6hlatjcom 39354 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑃𝐴) → (𝑆 𝑃) = (𝑃 𝑆))
842, 9, 12, 83syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑃) = (𝑃 𝑆))
8584oveq1d 7384 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) (𝑄 𝑅)) = ((𝑃 𝑆) (𝑄 𝑅)))
8682, 85eqtrd 2764 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
87863ad2ant1 1133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
882, 12, 93jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴))
8928, 4jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄𝐴𝑅𝐴))
90 simpl3 1194 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
9188, 89, 903jca 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
92913ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
9323, 14, 64noncolr1 39442 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
9436, 37, 39, 93syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
95 necom 2978 . . . . . . . . . . 11 (𝑆𝑃𝑃𝑆)
9695a1i 11 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃𝑃𝑆))
9784breq2d 5114 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄 (𝑆 𝑃) ↔ 𝑄 (𝑃 𝑆)))
9897notbid 318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 (𝑆 𝑃) ↔ ¬ 𝑄 (𝑃 𝑆)))
9984oveq1d 7384 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) 𝑄) = ((𝑃 𝑆) 𝑄))
10099breq2d 5114 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 ((𝑆 𝑃) 𝑄) ↔ 𝑅 ((𝑃 𝑆) 𝑄)))
101100notbid 318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑆 𝑃) 𝑄) ↔ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
10296, 98, 1013anbi123d 1438 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)) ↔ (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄))))
10394, 102mpbid 232 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
1041033ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
105 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑉) 𝑊))
106 simpr3 1197 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
107 simpr1 1195 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
108 simpr2 1196 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
109106, 107, 1083jca 1128 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
1101093adant2 1131 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
11123, 14, 64atlem11b 39595 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) ∧ (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11292, 104, 105, 110, 111syl121anc 1377 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11387, 112eqtrd 2764 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
1141133exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11548, 78, 1143jaod 1431 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11641, 115mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
11735, 116sylbird 260 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  Latclat 18372  Atomscatm 39249  HLchlt 39336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487
This theorem is referenced by:  4atlem12b  39598
  Copyright terms: Public domain W3C validator