Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11 Structured version   Visualization version   GIF version

Theorem 4atlem11 35684
Description: Lemma for 4at 35688. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem11
StepHypRef Expression
1 3anass 1122 . . . 4 ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))))
2 simpl11 1335 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
32hllatd 35439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
4 simpl2l 1303 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
5 eqid 2825 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
6 4at.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 35364 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
84, 7syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
9 simpl2r 1305 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
105, 6atbase 35364 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
12 simpl12 1337 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
13 simpl31 1347 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 4at.j . . . . . . . . 9 = (join‘𝐾)
155, 14, 6hlatjcl 35442 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
162, 12, 13, 15syl3anc 1496 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑈) ∈ (Base‘𝐾))
17 simpl32 1349 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
18 simpl33 1351 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
195, 14, 6hlatjcl 35442 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
202, 17, 18, 19syl3anc 1496 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
215, 14latjcl 17404 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
223, 16, 20, 21syl3anc 1496 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
23 4at.l . . . . . . 7 = (le‘𝐾)
245, 23, 14latjle12 17415 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
253, 8, 11, 22, 24syl13anc 1497 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))))
2625anbi2d 624 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
271, 26syl5bb 275 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊)))))
28 simpl13 1339 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
295, 6atbase 35364 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
315, 14, 6hlatjcl 35442 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
322, 4, 9, 31syl3anc 1496 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
335, 23, 14latjle12 17415 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑃 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
343, 30, 32, 22, 33syl13anc 1497 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ (𝑅 𝑆) ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
3527, 34bitrd 271 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) ↔ (𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊))))
36 simpl1 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
37 simpl2 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
3817, 18jca 509 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉𝐴𝑊𝐴))
39 simpr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4023, 14, 64atlem3a 35672 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
4136, 37, 38, 39, 40syl31anc 1498 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)))
42 simp1l 1260 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
43 simp1r 1261 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
44 simp2 1173 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 ((𝑃 𝑉) 𝑊))
45 simp3 1174 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))))
4623, 14, 64atlem11b 35683 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
4742, 43, 44, 45, 46syl121anc 1500 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
48473exp 1154 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
4923ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝐾 ∈ HL)
50123ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝐴)
51283ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄𝐴)
5243ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅𝐴)
5393ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆𝐴)
5414, 6hlatj4 35449 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5549, 50, 51, 52, 53, 54syl122anc 1504 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
5649, 50, 523jca 1164 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴))
5751, 53jca 509 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑄𝐴𝑆𝐴))
58 simp1l3 1373 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
59 simp1r2 1375 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 (𝑃 𝑄))
6023, 14, 64atlem0be 35670 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑅)
6149, 50, 51, 52, 59, 60syl131anc 1508 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑅)
62 simp1r1 1374 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑃𝑄)
6323, 14, 64atlem0ae 35669 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑅))
6449, 50, 51, 52, 62, 59, 63syl132anc 1513 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑄 (𝑃 𝑅))
65 simp1r3 1376 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
6614, 6hlatj32 35447 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6749, 50, 51, 52, 66syl13anc 1497 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
6867breq2d 4885 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ 𝑆 ((𝑃 𝑅) 𝑄)))
6965, 68mtbid 316 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑅) 𝑄))
7061, 64, 693jca 1164 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)))
71 simp2 1173 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑉) 𝑊))
72 simp32 1273 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
73 simp31 1272 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
74 simp33 1274 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
7523, 14, 64atlem11b 35683 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑅 ∧ ¬ 𝑄 (𝑃 𝑅) ∧ ¬ 𝑆 ((𝑃 𝑅) 𝑄)) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊)) ∧ (𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7656, 57, 58, 70, 71, 72, 73, 74, 75syl323anc 1525 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑅) (𝑄 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
7755, 76eqtrd 2861 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
78773exp 1154 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
795, 6atbase 35364 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
8012, 79syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
815, 14latj4rot 17455 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
823, 80, 30, 8, 11, 81syl122anc 1504 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑆 𝑃) (𝑄 𝑅)))
8314, 6hlatjcom 35443 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑃𝐴) → (𝑆 𝑃) = (𝑃 𝑆))
842, 9, 12, 83syl3anc 1496 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑃) = (𝑃 𝑆))
8584oveq1d 6920 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) (𝑄 𝑅)) = ((𝑃 𝑆) (𝑄 𝑅)))
8682, 85eqtrd 2861 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
87863ad2ant1 1169 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑆) (𝑄 𝑅)))
882, 12, 93jca 1164 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴))
8928, 4jca 509 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄𝐴𝑅𝐴))
90 simpl3 1252 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑈𝐴𝑉𝐴𝑊𝐴))
9188, 89, 903jca 1164 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
92913ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)))
9323, 14, 64noncolr1 35530 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
9436, 37, 39, 93syl3anc 1496 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)))
95 necom 3052 . . . . . . . . . . 11 (𝑆𝑃𝑃𝑆)
9695a1i 11 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝑃𝑃𝑆))
9784breq2d 4885 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑄 (𝑆 𝑃) ↔ 𝑄 (𝑃 𝑆)))
9897notbid 310 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑄 (𝑆 𝑃) ↔ ¬ 𝑄 (𝑃 𝑆)))
9984oveq1d 6920 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆 𝑃) 𝑄) = ((𝑃 𝑆) 𝑄))
10099breq2d 4885 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 ((𝑆 𝑃) 𝑄) ↔ 𝑅 ((𝑃 𝑆) 𝑄)))
101100notbid 310 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑆 𝑃) 𝑄) ↔ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
10296, 98, 1013anbi123d 1566 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑆𝑃 ∧ ¬ 𝑄 (𝑆 𝑃) ∧ ¬ 𝑅 ((𝑆 𝑃) 𝑄)) ↔ (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄))))
10394, 102mpbid 224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
1041033ad2ant1 1169 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)))
105 simp2 1173 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑉) 𝑊))
106 simpr3 1258 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))
107 simpr1 1254 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑄 ((𝑃 𝑈) (𝑉 𝑊)))
108 simpr2 1256 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))
109106, 107, 1083jca 1164 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
1101093adant2 1167 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊))))
11123, 14, 64atlem11b 35683 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑅𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ ((𝑃𝑆 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ ¬ 𝑅 ((𝑃 𝑆) 𝑄)) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) ∧ (𝑆 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11292, 104, 105, 110, 111syl121anc 1500 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑆) (𝑄 𝑅)) = ((𝑃 𝑈) (𝑉 𝑊)))
11387, 112eqtrd 2861 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑉) 𝑊) ∧ (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))
1141133exp 1154 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑉) 𝑊) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11548, 78, 1143jaod 1559 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑄 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑅 ((𝑃 𝑉) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑉) 𝑊)) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊)))))
11641, 115mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑈) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑈) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
11735, 116sylbird 252 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑄 (𝑅 𝑆)) ((𝑃 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3o 1112  w3a 1113   = wceq 1658  wcel 2166  wne 2999   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  Latclat 17398  Atomscatm 35338  HLchlt 35425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-llines 35573  df-lplanes 35574  df-lvols 35575
This theorem is referenced by:  4atlem12b  35686
  Copyright terms: Public domain W3C validator