Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2l1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2l1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: btwnconn1lem8 34323 btwnconn1lem11 34326 btwnconn1lem12 34327 2lplnja 37560 cdlemk21-2N 38832 cdlemk19xlem 38883 jm2.27 40746 |
Copyright terms: Public domain | W3C validator |