MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l1 Structured version   Visualization version   GIF version

Theorem simp2l1 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑)

Proof of Theorem simp2l1
StepHypRef Expression
1 simpl1 1188 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant2 1131 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086
This theorem is referenced by:  poxp3  8133  btwnconn1lem8  35598  btwnconn1lem11  35601  btwnconn1lem12  35602  2lplnja  39002  cdlemk21-2N  40274  cdlemk19xlem  40325  jm2.27  42307
  Copyright terms: Public domain W3C validator