Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnja Structured version   Visualization version   GIF version

Theorem 2lplnja 39728
Description: The join of two different lattice planes in a lattice volume equals the volume (version of 2lplnj 39729 in terms of atoms). (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnja.l = (le‘𝐾)
2lplnja.j = (join‘𝐾)
2lplnja.a 𝐴 = (Atoms‘𝐾)
2lplnja.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnja ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)

Proof of Theorem 2lplnja
StepHypRef Expression
1 eqid 2731 . 2 (Base‘𝐾) = (Base‘𝐾)
2 2lplnja.l . 2 = (le‘𝐾)
3 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ HL)
43hllatd 39473 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ Lat)
5 simp121 1306 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝐴)
6 simp122 1307 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑄𝐴)
7 2lplnja.j . . . . . 6 = (join‘𝐾)
8 2lplnja.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 39476 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp123 1308 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅𝐴)
121, 8atbase 39398 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅 ∈ (Base‘𝐾))
141, 7latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
16 simp2l1 1273 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝐴)
17 simp2l2 1274 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇𝐴)
181, 7, 8hlatjcl 39476 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
193, 16, 17, 18syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑇) ∈ (Base‘𝐾))
20 simp2l3 1275 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈𝐴)
211, 8atbase 39398 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ∈ (Base‘𝐾))
231, 7latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
244, 19, 22, 23syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
251, 7latjcl 18345 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
264, 15, 24, 25syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
27 simp11r 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊𝑉)
28 2lplnja.v . . . 4 𝑉 = (LVols‘𝐾)
291, 28lvolbase 39687 . . 3 (𝑊𝑉𝑊 ∈ (Base‘𝐾))
3027, 29syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 ∈ (Base‘𝐾))
31 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) 𝑊)
32 simp32 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) 𝑊)
331, 2, 7latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
344, 15, 24, 30, 33syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
3531, 32, 34mpbi2and 712 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊)
361, 2, 7latlej2 18355 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
374, 19, 22, 36syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ((𝑆 𝑇) 𝑈))
381, 2, 4, 22, 24, 30, 37, 32lattrd 18352 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 𝑊)
391, 2, 7latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
404, 15, 22, 30, 39syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
4131, 38, 40mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
4241ad2antrr 726 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
433ad2antrr 726 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
443, 5, 63jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4544ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4611, 20jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑈𝐴))
4746ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑈𝐴))
48 simp13l 1289 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝑄)
4948ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
50 simp13r 1290 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑅 (𝑃 𝑄))
5150ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
52 simp33 1212 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
5352ad2antrr 726 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
54 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑆 ((𝑃 𝑄) 𝑅))
55 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑇 ((𝑃 𝑄) 𝑅))
561, 8atbase 39398 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
5716, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ∈ (Base‘𝐾))
581, 8atbase 39398 . . . . . . . . . . . . . . . . . . 19 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
5917, 58syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ∈ (Base‘𝐾))
601, 2, 7latjle12 18356 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
614, 57, 59, 15, 60syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6261ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6354, 55, 62mpbi2and 712 . . . . . . . . . . . . . . 15 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
6463adantr 480 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
65 simpr 484 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → 𝑈 ((𝑃 𝑄) 𝑅))
661, 2, 7latjle12 18356 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
674, 19, 22, 15, 66syl13anc 1374 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
6867ad3antrrr 730 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
6964, 65, 68mpbi2and 712 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅))
70 simp2l 1200 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆𝐴𝑇𝐴𝑈𝐴))
71 simp12 1205 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
72 simp2rr 1244 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑈 (𝑆 𝑇))
73 simp2rl 1243 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝑇)
742, 7, 83at 39599 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (¬ 𝑈 (𝑆 𝑇) ∧ 𝑆𝑇)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
753, 70, 71, 72, 73, 74syl32anc 1380 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7675ad3antrrr 730 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7769, 76mpbid 232 . . . . . . . . . . . 12 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅))
7877eqcomd 2737 . . . . . . . . . . 11 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
7978ex 412 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑈 ((𝑃 𝑄) 𝑅) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
8079necon3ad 2941 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈) → ¬ 𝑈 ((𝑃 𝑄) 𝑅)))
8153, 80mpd 15 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑈 ((𝑃 𝑄) 𝑅))
822, 7, 8, 28lvoli2 39690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑈𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑈 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8345, 47, 49, 51, 81, 82syl113anc 1384 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8427ad2antrr 726 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
852, 28lvolcmp 39726 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8643, 83, 84, 85syl3anc 1373 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8742, 86mpbid 232 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊)
881, 2, 7latjlej2 18360 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
894, 22, 24, 15, 88syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
9037, 89mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9190ad2antrr 726 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9287, 91eqbrtrrd 5113 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
931, 7, 8hlatjcl 39476 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑈𝐴) → (𝑆 𝑈) ∈ (Base‘𝐾))
943, 16, 20, 93syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑈) ∈ (Base‘𝐾))
951, 2, 7latlej2 18355 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ((𝑆 𝑈) 𝑇))
964, 94, 59, 95syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑈) 𝑇))
977, 8hlatj32 39481 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
983, 16, 17, 20, 97syl13anc 1374 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
9996, 98breqtrrd 5117 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑇) 𝑈))
1001, 2, 4, 59, 24, 30, 99, 32lattrd 18352 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 𝑊)
1011, 2, 7latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
1024, 15, 59, 30, 101syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
10331, 100, 102mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
104103ad2antrr 726 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
1053ad2antrr 726 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
10644ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
10711, 17jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑇𝐴))
108107ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑇𝐴))
10948ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
11050ad2antrr 726 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
111 simpr 484 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
1122, 7, 8, 28lvoli2 39690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑇𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
113106, 108, 109, 110, 111, 112syl113anc 1384 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
11427ad2antrr 726 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1152, 28lvolcmp 39726 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
116105, 113, 114, 115syl3anc 1373 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
117104, 116mpbid 232 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊)
1181, 2, 7latjlej2 18360 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1194, 59, 24, 15, 118syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
12099, 119mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
121120ad2antrr 726 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
122117, 121eqbrtrrd 5113 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
12392, 122pm2.61dan 812 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1241, 7, 8hlatjcl 39476 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
1253, 17, 20, 124syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 𝑈) ∈ (Base‘𝐾))
1261, 2, 7latlej1 18354 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → 𝑆 (𝑆 (𝑇 𝑈)))
1274, 57, 125, 126syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 (𝑆 (𝑇 𝑈)))
1281, 7latjass 18389 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
1294, 57, 59, 22, 128syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
130127, 129breqtrrd 5117 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ((𝑆 𝑇) 𝑈))
1311, 2, 4, 57, 24, 30, 130, 32lattrd 18352 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 𝑊)
1321, 2, 7latjle12 18356 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
1334, 15, 57, 30, 132syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
13431, 131, 133mpbi2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
135134adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
1363adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
13744adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13811, 16jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑆𝐴))
139138adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑆𝐴))
14048adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
14150adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
142 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
1432, 7, 8, 28lvoli2 39690 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
144137, 139, 140, 141, 142, 143syl113anc 1384 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
14527adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1462, 28lvolcmp 39726 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
147136, 144, 145, 146syl3anc 1373 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
148135, 147mpbid 232 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊)
1491, 2, 7latjlej2 18360 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1504, 57, 24, 15, 149syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
151130, 150mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
152151adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
153148, 152eqbrtrrd 5113 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
154123, 153pm2.61dan 812 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1551, 2, 4, 26, 30, 35, 154latasymd 18351 1 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39372  HLchlt 39459  LVolsclvol 39602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609
This theorem is referenced by:  2lplnj  39729
  Copyright terms: Public domain W3C validator