Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnja Structured version   Visualization version   GIF version

Theorem 2lplnja 37560
Description: The join of two different lattice planes in a lattice volume equals the volume (version of 2lplnj 37561 in terms of atoms). (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnja.l = (le‘𝐾)
2lplnja.j = (join‘𝐾)
2lplnja.a 𝐴 = (Atoms‘𝐾)
2lplnja.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnja ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)

Proof of Theorem 2lplnja
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐾) = (Base‘𝐾)
2 2lplnja.l . 2 = (le‘𝐾)
3 simp11l 1282 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ HL)
43hllatd 37305 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝐾 ∈ Lat)
5 simp121 1303 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝐴)
6 simp122 1304 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑄𝐴)
7 2lplnja.j . . . . . 6 = (join‘𝐾)
8 2lplnja.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp123 1305 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅𝐴)
121, 8atbase 37230 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑅 ∈ (Base‘𝐾))
141, 7latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
16 simp2l1 1270 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝐴)
17 simp2l2 1271 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇𝐴)
181, 7, 8hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
193, 16, 17, 18syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑇) ∈ (Base‘𝐾))
20 simp2l3 1272 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈𝐴)
211, 8atbase 37230 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ∈ (Base‘𝐾))
231, 7latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
244, 19, 22, 23syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾))
251, 7latjcl 18072 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
264, 15, 24, 25syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) ∈ (Base‘𝐾))
27 simp11r 1283 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊𝑉)
28 2lplnja.v . . . 4 𝑉 = (LVols‘𝐾)
291, 28lvolbase 37519 . . 3 (𝑊𝑉𝑊 ∈ (Base‘𝐾))
3027, 29syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 ∈ (Base‘𝐾))
31 simp31 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) 𝑊)
32 simp32 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) 𝑊)
331, 2, 7latjle12 18083 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
344, 15, 24, 30, 33syl13anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊))
3531, 32, 34mpbi2and 708 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) 𝑊)
361, 2, 7latlej2 18082 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
374, 19, 22, 36syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 ((𝑆 𝑇) 𝑈))
381, 2, 4, 22, 24, 30, 37, 32lattrd 18079 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑈 𝑊)
391, 2, 7latjle12 18083 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
404, 15, 22, 30, 39syl13anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑈 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑈) 𝑊))
4131, 38, 40mpbi2and 708 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
4241ad2antrr 722 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) 𝑊)
433ad2antrr 722 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
443, 5, 63jca 1126 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4544ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
4611, 20jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑈𝐴))
4746ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑈𝐴))
48 simp13l 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑃𝑄)
4948ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
50 simp13r 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑅 (𝑃 𝑄))
5150ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
52 simp33 1209 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
5352ad2antrr 722 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))
54 simplr 765 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑆 ((𝑃 𝑄) 𝑅))
55 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑇 ((𝑃 𝑄) 𝑅))
561, 8atbase 37230 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
5716, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ∈ (Base‘𝐾))
581, 8atbase 37230 . . . . . . . . . . . . . . . . . . 19 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
5917, 58syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ∈ (Base‘𝐾))
601, 2, 7latjle12 18083 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
614, 57, 59, 15, 60syl13anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6261ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((𝑆 ((𝑃 𝑄) 𝑅) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 𝑇) ((𝑃 𝑄) 𝑅)))
6354, 55, 62mpbi2and 708 . . . . . . . . . . . . . . 15 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
6463adantr 480 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (𝑆 𝑇) ((𝑃 𝑄) 𝑅))
65 simpr 484 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → 𝑈 ((𝑃 𝑄) 𝑅))
661, 2, 7latjle12 18083 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
674, 19, 22, 15, 66syl13anc 1370 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
6867ad3antrrr 726 . . . . . . . . . . . . . 14 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) ((𝑃 𝑄) 𝑅) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) ↔ ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅)))
6964, 65, 68mpbi2and 708 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅))
70 simp2l 1197 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆𝐴𝑇𝐴𝑈𝐴))
71 simp12 1202 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
72 simp2rr 1241 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ¬ 𝑈 (𝑆 𝑇))
73 simp2rl 1240 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆𝑇)
742, 7, 83at 37431 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (¬ 𝑈 (𝑆 𝑇) ∧ 𝑆𝑇)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
753, 70, 71, 72, 73, 74syl32anc 1376 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7675ad3antrrr 726 . . . . . . . . . . . . 13 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → (((𝑆 𝑇) 𝑈) ((𝑃 𝑄) 𝑅) ↔ ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅)))
7769, 76mpbid 231 . . . . . . . . . . . 12 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑆 𝑇) 𝑈) = ((𝑃 𝑄) 𝑅))
7877eqcomd 2744 . . . . . . . . . . 11 (((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) ∧ 𝑈 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
7978ex 412 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑈 ((𝑃 𝑄) 𝑅) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
8079necon3ad 2955 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈) → ¬ 𝑈 ((𝑃 𝑄) 𝑅)))
8153, 80mpd 15 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑈 ((𝑃 𝑄) 𝑅))
822, 7, 8, 28lvoli2 37522 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑈𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑈 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8345, 47, 49, 51, 81, 82syl113anc 1380 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉)
8427ad2antrr 722 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
852, 28lvolcmp 37558 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑈) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8643, 83, 84, 85syl3anc 1369 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑈) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊))
8742, 86mpbid 231 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) = 𝑊)
881, 2, 7latjlej2 18087 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
894, 22, 24, 15, 88syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑈 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
9037, 89mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9190ad2antrr 722 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑈) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
9287, 91eqbrtrrd 5094 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
931, 7, 8hlatjcl 37308 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑈𝐴) → (𝑆 𝑈) ∈ (Base‘𝐾))
943, 16, 20, 93syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 𝑈) ∈ (Base‘𝐾))
951, 2, 7latlej2 18082 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ((𝑆 𝑈) 𝑇))
964, 94, 59, 95syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑈) 𝑇))
977, 8hlatj32 37313 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
983, 16, 17, 20, 97syl13anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) 𝑇))
9996, 98breqtrrd 5098 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 ((𝑆 𝑇) 𝑈))
1001, 2, 4, 59, 24, 30, 99, 32lattrd 18079 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑇 𝑊)
1011, 2, 7latjle12 18083 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
1024, 15, 59, 30, 101syl13anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑇 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑇) 𝑊))
10331, 100, 102mpbi2and 708 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
104103ad2antrr 722 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) 𝑊)
1053ad2antrr 722 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
10644ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
10711, 17jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑇𝐴))
108107ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑇𝐴))
10948ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
11050ad2antrr 722 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
111 simpr 484 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
1122, 7, 8, 28lvoli2 37522 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑇𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
113106, 108, 109, 110, 111, 112syl113anc 1380 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉)
11427ad2antrr 722 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1152, 28lvolcmp 37558 . . . . . . 7 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑇) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
116105, 113, 114, 115syl3anc 1369 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑇) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊))
117104, 116mpbid 231 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) = 𝑊)
1181, 2, 7latjlej2 18087 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1194, 59, 24, 15, 118syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
12099, 119mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
121120ad2antrr 722 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑇) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
122117, 121eqbrtrrd 5094 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
12392, 122pm2.61dan 809 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1241, 7, 8hlatjcl 37308 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
1253, 17, 20, 124syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑇 𝑈) ∈ (Base‘𝐾))
1261, 2, 7latlej1 18081 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → 𝑆 (𝑆 (𝑇 𝑈)))
1274, 57, 125, 126syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 (𝑆 (𝑇 𝑈)))
1281, 7latjass 18116 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
1294, 57, 59, 22, 128syl13anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((𝑆 𝑇) 𝑈) = (𝑆 (𝑇 𝑈)))
130127, 129breqtrrd 5098 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 ((𝑆 𝑇) 𝑈))
1311, 2, 4, 57, 24, 30, 130, 32lattrd 18079 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑆 𝑊)
1321, 2, 7latjle12 18083 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
1334, 15, 57, 30, 132syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → ((((𝑃 𝑄) 𝑅) 𝑊𝑆 𝑊) ↔ (((𝑃 𝑄) 𝑅) 𝑆) 𝑊))
13431, 131, 133mpbi2and 708 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
135134adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) 𝑊)
1363adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
13744adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13811, 16jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑅𝐴𝑆𝐴))
139138adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑅𝐴𝑆𝐴))
14048adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑃𝑄)
14150adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑅 (𝑃 𝑄))
142 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
1432, 7, 8, 28lvoli2 37522 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
144137, 139, 140, 141, 142, 143syl113anc 1380 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
14527adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊𝑉)
1462, 28lvolcmp 37558 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑊𝑉) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
147136, 144, 145, 146syl3anc 1369 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((((𝑃 𝑄) 𝑅) 𝑆) 𝑊 ↔ (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊))
148135, 147mpbid 231 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) = 𝑊)
1491, 2, 7latjlej2 18087 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
1504, 57, 24, 15, 149syl13anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (𝑆 ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))))
151130, 150mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
152151adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
153148, 152eqbrtrrd 5094 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
154123, 153pm2.61dan 809 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → 𝑊 (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
1551, 2, 4, 26, 30, 35, 154latasymd 18078 1 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) ∧ (((𝑃 𝑄) 𝑅) 𝑊 ∧ ((𝑆 𝑇) 𝑈) 𝑊 ∧ ((𝑃 𝑄) 𝑅) ≠ ((𝑆 𝑇) 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291  LVolsclvol 37434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441
This theorem is referenced by:  2lplnj  37561
  Copyright terms: Public domain W3C validator