MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snidb Structured version   Visualization version   GIF version

Theorem snidb 4625
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})

Proof of Theorem snidb
StepHypRef Expression
1 snidg 4624 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
2 elex 3468 . 2 (𝐴 ∈ {𝐴} → 𝐴 ∈ V)
31, 2impbii 209 1 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3447  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-sn 4590
This theorem is referenced by:  snid  4626  dffv2  6956  snen1el  43514
  Copyright terms: Public domain W3C validator