MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snidb Structured version   Visualization version   GIF version

Theorem snidb 4593
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})

Proof of Theorem snidb
StepHypRef Expression
1 snidg 4592 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
2 elex 3440 . 2 (𝐴 ∈ {𝐴} → 𝐴 ∈ V)
31, 2impbii 208 1 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  Vcvv 3422  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sn 4559
This theorem is referenced by:  snid  4594  dffv2  6845  snen1el  41030
  Copyright terms: Public domain W3C validator