![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snidb | Structured version Visualization version GIF version |
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
snidb | ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4661 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
2 | elex 3492 | . 2 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3474 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-sn 4628 |
This theorem is referenced by: snid 4663 dffv2 6983 snen1el 42261 |
Copyright terms: Public domain | W3C validator |