| Step | Hyp | Ref
| Expression |
| 1 | | snidb 4661 |
. . . . 5
⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) |
| 2 | | fvres 6925 |
. . . . 5
⊢ (𝐴 ∈ {𝐴} → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
| 3 | 1, 2 | sylbi 217 |
. . . 4
⊢ (𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
| 4 | | fvprc 6898 |
. . . . 5
⊢ (¬
𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = ∅) |
| 5 | | fvprc 6898 |
. . . . 5
⊢ (¬
𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| 6 | 4, 5 | eqtr4d 2780 |
. . . 4
⊢ (¬
𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
| 7 | 3, 6 | pm2.61i 182 |
. . 3
⊢ ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴) |
| 8 | | funfv 6996 |
. . . 4
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ∪ ((𝐹 ↾ {𝐴}) “ {𝐴})) |
| 9 | | resima 6033 |
. . . . . . 7
⊢ ((𝐹 ↾ {𝐴}) “ {𝐴}) = (𝐹 “ {𝐴}) |
| 10 | | dif0 4378 |
. . . . . . 7
⊢ ((𝐹 “ {𝐴}) ∖ ∅) = (𝐹 “ {𝐴}) |
| 11 | 9, 10 | eqtr4i 2768 |
. . . . . 6
⊢ ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ ∅) |
| 12 | | df-fun 6563 |
. . . . . . . . . . . . 13
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I )) |
| 13 | 12 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I ) |
| 14 | | ssdif0 4366 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I ↔ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
| 15 | 13, 14 | sylib 218 |
. . . . . . . . . . 11
⊢ (Fun
(𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
| 16 | 15 | unieqd 4920 |
. . . . . . . . . 10
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∪ ∅) |
| 17 | | uni0 4935 |
. . . . . . . . . 10
⊢ ∪ ∅ = ∅ |
| 18 | 16, 17 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
| 19 | 18 | unieqd 4920 |
. . . . . . . 8
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∪ ∅) |
| 20 | 19, 17 | eqtrdi 2793 |
. . . . . . 7
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
| 21 | 20 | difeq2d 4126 |
. . . . . 6
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ((𝐹 “ {𝐴}) ∖ ∅)) |
| 22 | 11, 21 | eqtr4id 2796 |
. . . . 5
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 23 | 22 | unieqd 4920 |
. . . 4
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ((𝐹
↾ {𝐴}) “ {𝐴}) = ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 24 | 8, 23 | eqtrd 2777 |
. . 3
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 25 | 7, 24 | eqtr3id 2791 |
. 2
⊢ (Fun
(𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 26 | | nfunsn 6948 |
. . 3
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
| 27 | | relres 6023 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐹 ↾ {𝐴}) |
| 28 | | dffun3 6575 |
. . . . . . . . . . . . . . 15
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦))) |
| 29 | 27, 28 | mpbiran 709 |
. . . . . . . . . . . . . 14
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ ∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦)) |
| 30 | | iman 401 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 31 | 30 | albii 1819 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∀𝑧 ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 32 | | alnex 1781 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ¬
(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 33 | 31, 32 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 34 | 33 | exbii 1848 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∃𝑦 ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 35 | | exnal 1827 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ¬
∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 36 | 34, 35 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 37 | 36 | albii 1819 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∀𝑥 ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 38 | | alnex 1781 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ¬
∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 39 | 29, 37, 38 | 3bitrri 298 |
. . . . . . . . . . . . 13
⊢ (¬
∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ Fun (𝐹 ↾ {𝐴})) |
| 40 | 39 | con1bii 356 |
. . . . . . . . . . . 12
⊢ (¬
Fun (𝐹 ↾ {𝐴}) ↔ ∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 41 | | sp 2183 |
. . . . . . . . . . . . 13
⊢
(∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 42 | 41 | eximi 1835 |
. . . . . . . . . . . 12
⊢
(∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 43 | 40, 42 | sylbi 217 |
. . . . . . . . . . 11
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 44 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → {𝐴} ⊆ dom (𝐹 ↾ {𝐴})) |
| 45 | | residm 6028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = (𝐹 ↾ {𝐴}) |
| 46 | 45 | dmeqi 5915 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
((𝐹 ↾ {𝐴}) ↾ {𝐴}) = dom (𝐹 ↾ {𝐴}) |
| 47 | | ssdmres 6031 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) ↔ dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴}) |
| 48 | 47 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴}) |
| 49 | 46, 48 | eqtr3id 2791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
| 50 | 44, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
| 51 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
| 52 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
| 53 | 51, 52 | breldm 5919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑥 ∈ dom (𝐹 ↾ {𝐴})) |
| 54 | | eleq2 2830 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
(𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 ∈ {𝐴})) |
| 55 | | velsn 4642 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 56 | 54, 55 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
(𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 = 𝐴)) |
| 57 | 56 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
(𝐹 ↾ {𝐴}) = {𝐴} ∧ 𝑥 ∈ dom (𝐹 ↾ {𝐴})) → 𝑥 = 𝐴) |
| 58 | 50, 53, 57 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → 𝑥 = 𝐴) |
| 59 | 58 | breq1d 5153 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧 ↔ 𝐴(𝐹 ↾ {𝐴})𝑧)) |
| 60 | 59 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧)) |
| 61 | 60 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧 → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧))) |
| 62 | 61 | pm2.43d 53 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧)) |
| 63 | 62 | anim1d 611 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
| 64 | 63 | eximdv 1917 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
| 65 | 64 | exlimdv 1933 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
| 66 | 43, 65 | mpan9 506 |
. . . . . . . . . 10
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
| 67 | 9 | eleq2i 2833 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) ↔ 𝑦 ∈ (𝐹 “ {𝐴})) |
| 68 | | elimasni 6109 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦) |
| 69 | 67, 68 | sylbir 235 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐹 “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦) |
| 70 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
| 71 | 70, 52 | uniop 5520 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 〈𝑦, 𝑧〉 = {𝑦, 𝑧} |
| 72 | | opex 5469 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈𝑦, 𝑧〉 ∈ V |
| 73 | 72 | unisn 4926 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ {〈𝑦, 𝑧〉} = 〈𝑦, 𝑧〉 |
| 74 | 27 | brrelex1i 5741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴(𝐹 ↾ {𝐴})𝑧 → 𝐴 ∈ V) |
| 75 | | brcnvg 5890 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ V) → (𝑦◡(𝐹 ↾ {𝐴})𝐴 ↔ 𝐴(𝐹 ↾ {𝐴})𝑦)) |
| 76 | 70, 74, 75 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴(𝐹 ↾ {𝐴})𝑧 → (𝑦◡(𝐹 ↾ {𝐴})𝐴 ↔ 𝐴(𝐹 ↾ {𝐴})𝑦)) |
| 77 | 76 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦◡(𝐹 ↾ {𝐴})𝐴) |
| 78 | 74 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧) → 𝐴 ∈ V) |
| 79 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝐴 → (𝑦◡(𝐹 ↾ {𝐴})𝑥 ↔ 𝑦◡(𝐹 ↾ {𝐴})𝐴)) |
| 80 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝐴 → (𝑥(𝐹 ↾ {𝐴})𝑧 ↔ 𝐴(𝐹 ↾ {𝐴})𝑧)) |
| 81 | 79, 80 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝐴 → ((𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ↔ (𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧))) |
| 82 | 81 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ V ∧ (𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧)) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 83 | 78, 82 | mpancom 688 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 84 | 83 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝑦◡(𝐹 ↾ {𝐴})𝐴) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 85 | 77, 84 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 86 | 85 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) ∧ ¬ 𝑧 = 𝑦) → (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
| 87 | 86 | an32s 652 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
| 88 | | eldif 3961 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ↔ (〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∧ ¬ 〈𝑦, 𝑧〉 ∈ I )) |
| 89 | | rexv 3509 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑥 ∈ V
(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ↔ ∃𝑥(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 90 | 70, 52 | brco 5881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))𝑧 ↔ ∃𝑥(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 91 | | df-br 5144 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))) |
| 92 | 89, 90, 91 | 3bitr2ri 300 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ↔ ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
| 93 | 52 | ideq 5863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
| 94 | | df-br 5144 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 I 𝑧 ↔ 〈𝑦, 𝑧〉 ∈ I ) |
| 95 | | equcom 2017 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
| 96 | 93, 94, 95 | 3bitr3i 301 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑦, 𝑧〉 ∈ I ↔ 𝑧 = 𝑦) |
| 97 | 96 | notbii 320 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
〈𝑦, 𝑧〉 ∈ I ↔ ¬ 𝑧 = 𝑦) |
| 98 | 92, 97 | anbi12i 628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∧ ¬ 〈𝑦, 𝑧〉 ∈ I ) ↔ (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
| 99 | 88, 98 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃𝑥 ∈ V
(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦) ↔ 〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 100 | 87, 99 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 101 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) → {〈𝑦, 𝑧〉} ⊆ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 102 | | uniss 4915 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈𝑦, 𝑧〉} ⊆ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) → ∪ {〈𝑦, 𝑧〉} ⊆ ∪
(((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 103 | 100, 101,
102 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∪
{〈𝑦, 𝑧〉} ⊆ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 104 | 73, 103 | eqsstrrid 4023 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 〈𝑦, 𝑧〉 ⊆ ∪
(((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 105 | 104 | unissd 4917 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∪
〈𝑦, 𝑧〉 ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 106 | 71, 105 | eqsstrrid 4023 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → {𝑦, 𝑧} ⊆ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 107 | 70, 52 | prss 4820 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) ↔ {𝑦, 𝑧} ⊆ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 108 | 106, 107 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 109 | 108 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 110 | 109 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑦 → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 111 | 69, 110 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 112 | 111 | exlimiv 1930 |
. . . . . . . . . 10
⊢
(∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 113 | 66, 112 | syl 17 |
. . . . . . . . 9
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 114 | 113 | ssrdv 3989 |
. . . . . . . 8
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝐹 “ {𝐴}) ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
| 115 | | ssdif0 4366 |
. . . . . . . 8
⊢ ((𝐹 “ {𝐴}) ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ↔ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
| 116 | 114, 115 | sylib 218 |
. . . . . . 7
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
| 117 | 116 | ex 412 |
. . . . . 6
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) =
∅)) |
| 118 | | ndmima 6121 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ∅) |
| 119 | 9, 118 | eqtr3id 2791 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝐹 “ {𝐴}) = ∅) |
| 120 | 119 | difeq1d 4125 |
. . . . . . 7
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = (∅ ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 121 | | 0dif 4405 |
. . . . . . 7
⊢ (∅
∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅ |
| 122 | 120, 121 | eqtrdi 2793 |
. . . . . 6
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
| 123 | 117, 122 | pm2.61d1 180 |
. . . . 5
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
| 124 | 123 | unieqd 4920 |
. . . 4
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∪ ∅) |
| 125 | 124, 17 | eqtrdi 2793 |
. . 3
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
| 126 | 26, 125 | eqtr4d 2780 |
. 2
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
| 127 | 25, 126 | pm2.61i 182 |
1
⊢ (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |