MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv2 Structured version   Visualization version   GIF version

Theorem dffv2 6970
Description: Alternate definition of function value df-fv 6535 that doesn't require dummy variables. (Contributed by NM, 4-Aug-2010.)
Assertion
Ref Expression
dffv2 (𝐹𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))

Proof of Theorem dffv2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidb 4634 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
2 fvres 6891 . . . . 5 (𝐴 ∈ {𝐴} → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
31, 2sylbi 217 . . . 4 (𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
4 fvprc 6864 . . . . 5 𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = ∅)
5 fvprc 6864 . . . . 5 𝐴 ∈ V → (𝐹𝐴) = ∅)
64, 5eqtr4d 2772 . . . 4 𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
73, 6pm2.61i 182 . . 3 ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴)
8 funfv 6962 . . . 4 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ((𝐹 ↾ {𝐴}) “ {𝐴}))
9 resima 5999 . . . . . . 7 ((𝐹 ↾ {𝐴}) “ {𝐴}) = (𝐹 “ {𝐴})
10 dif0 4351 . . . . . . 7 ((𝐹 “ {𝐴}) ∖ ∅) = (𝐹 “ {𝐴})
119, 10eqtr4i 2760 . . . . . 6 ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ ∅)
12 df-fun 6529 . . . . . . . . . . . . 13 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ⊆ I ))
1312simprbi 496 . . . . . . . . . . . 12 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ⊆ I )
14 ssdif0 4339 . . . . . . . . . . . 12 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ⊆ I ↔ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
1513, 14sylib 218 . . . . . . . . . . 11 (Fun (𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
1615unieqd 4893 . . . . . . . . . 10 (Fun (𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
17 uni0 4908 . . . . . . . . . 10 ∅ = ∅
1816, 17eqtrdi 2785 . . . . . . . . 9 (Fun (𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
1918unieqd 4893 . . . . . . . 8 (Fun (𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
2019, 17eqtrdi 2785 . . . . . . 7 (Fun (𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) = ∅)
2120difeq2d 4099 . . . . . 6 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ((𝐹 “ {𝐴}) ∖ ∅))
2211, 21eqtr4id 2788 . . . . 5 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
2322unieqd 4893 . . . 4 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
248, 23eqtrd 2769 . . 3 (Fun (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
257, 24eqtr3id 2783 . 2 (Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
26 nfunsn 6914 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
27 relres 5989 . . . . . . . . . . . . . . 15 Rel (𝐹 ↾ {𝐴})
28 dffun3 6541 . . . . . . . . . . . . . . 15 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦)))
2927, 28mpbiran 709 . . . . . . . . . . . . . 14 (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦))
30 iman 401 . . . . . . . . . . . . . . . . . . 19 ((𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3130albii 1818 . . . . . . . . . . . . . . . . . 18 (∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ∀𝑧 ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
32 alnex 1780 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3331, 32bitri 275 . . . . . . . . . . . . . . . . 17 (∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3433exbii 1847 . . . . . . . . . . . . . . . 16 (∃𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ∃𝑦 ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
35 exnal 1826 . . . . . . . . . . . . . . . 16 (∃𝑦 ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∀𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3634, 35bitri 275 . . . . . . . . . . . . . . 15 (∃𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ¬ ∀𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3736albii 1818 . . . . . . . . . . . . . 14 (∀𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧𝑧 = 𝑦) ↔ ∀𝑥 ¬ ∀𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
38 alnex 1780 . . . . . . . . . . . . . 14 (∀𝑥 ¬ ∀𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
3929, 37, 383bitrri 298 . . . . . . . . . . . . 13 (¬ ∃𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ Fun (𝐹 ↾ {𝐴}))
4039con1bii 356 . . . . . . . . . . . 12 (¬ Fun (𝐹 ↾ {𝐴}) ↔ ∃𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
41 sp 2182 . . . . . . . . . . . . 13 (∀𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
4241eximi 1834 . . . . . . . . . . . 12 (∃𝑥𝑦𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑥𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
4340, 42sylbi 217 . . . . . . . . . . 11 (¬ Fun (𝐹 ↾ {𝐴}) → ∃𝑥𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
44 snssi 4781 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → {𝐴} ⊆ dom (𝐹 ↾ {𝐴}))
45 residm 5994 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = (𝐹 ↾ {𝐴})
4645dmeqi 5881 . . . . . . . . . . . . . . . . . . . . 21 dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = dom (𝐹 ↾ {𝐴})
47 ssdmres 5997 . . . . . . . . . . . . . . . . . . . . . 22 ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) ↔ dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴})
4847biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴})
4946, 48eqtr3id 2783 . . . . . . . . . . . . . . . . . . . 20 ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴})
5044, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴})
51 vex 3461 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
52 vex 3461 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
5351, 52breldm 5885 . . . . . . . . . . . . . . . . . . 19 (𝑥(𝐹 ↾ {𝐴})𝑧𝑥 ∈ dom (𝐹 ↾ {𝐴}))
54 eleq2 2822 . . . . . . . . . . . . . . . . . . . . 21 (dom (𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 ∈ {𝐴}))
55 velsn 4615 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5654, 55bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (dom (𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 = 𝐴))
5756biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((dom (𝐹 ↾ {𝐴}) = {𝐴} ∧ 𝑥 ∈ dom (𝐹 ↾ {𝐴})) → 𝑥 = 𝐴)
5850, 53, 57syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → 𝑥 = 𝐴)
5958breq1d 5126 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑧))
6059biimpd 229 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑧))
6160ex 412 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧 → (𝑥(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑧)))
6261pm2.43d 53 . . . . . . . . . . . . . 14 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑧))
6362anim1d 611 . . . . . . . . . . . . 13 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)))
6463eximdv 1916 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)))
6564exlimdv 1932 . . . . . . . . . . 11 (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑥𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)))
6643, 65mpan9 506 . . . . . . . . . 10 ((¬ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))
679eleq2i 2825 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) ↔ 𝑦 ∈ (𝐹 “ {𝐴}))
68 elimasni 6075 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦)
6967, 68sylbir 235 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦)
70 vex 3461 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
7170, 52uniop 5487 . . . . . . . . . . . . . . . 16 𝑦, 𝑧⟩ = {𝑦, 𝑧}
72 opex 5436 . . . . . . . . . . . . . . . . . . 19 𝑦, 𝑧⟩ ∈ V
7372unisn 4899 . . . . . . . . . . . . . . . . . 18 {⟨𝑦, 𝑧⟩} = ⟨𝑦, 𝑧
7427brrelex1i 5707 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴(𝐹 ↾ {𝐴})𝑧𝐴 ∈ V)
75 brcnvg 5856 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ V ∧ 𝐴 ∈ V) → (𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑦))
7670, 74, 75sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(𝐹 ↾ {𝐴})𝑧 → (𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑦))
7776biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦(𝐹 ↾ {𝐴})𝐴)
7874adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑧) → 𝐴 ∈ V)
79 breq2 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝐴 → (𝑦(𝐹 ↾ {𝐴})𝑥𝑦(𝐹 ↾ {𝐴})𝐴))
80 breq1 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝐴 → (𝑥(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑧))
8179, 80anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝐴 → ((𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ↔ (𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑧)))
8281rspcev 3599 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ V ∧ (𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑧)) → ∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
8378, 82mpancom 688 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦(𝐹 ↾ {𝐴})𝐴𝐴(𝐹 ↾ {𝐴})𝑧) → ∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
8483ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴(𝐹 ↾ {𝐴})𝑧𝑦(𝐹 ↾ {𝐴})𝐴) → ∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
8577, 84syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑦) → ∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
8685anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴(𝐹 ↾ {𝐴})𝑧𝐴(𝐹 ↾ {𝐴})𝑦) ∧ ¬ 𝑧 = 𝑦) → (∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦))
8786an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦))
88 eldif 3934 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑦, 𝑧⟩ ∈ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) ↔ (⟨𝑦, 𝑧⟩ ∈ ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ))
89 rexv 3486 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ↔ ∃𝑥(𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
9070, 52brco 5847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴}))𝑧 ↔ ∃𝑥(𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
91 df-br 5117 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴}))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})))
9289, 90, 913bitr2ri 300 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑦, 𝑧⟩ ∈ ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ↔ ∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧))
9352ideq 5829 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 I 𝑧𝑦 = 𝑧)
94 df-br 5117 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
95 equcom 2016 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧𝑧 = 𝑦)
9693, 94, 953bitr3i 301 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑦, 𝑧⟩ ∈ I ↔ 𝑧 = 𝑦)
9796notbii 320 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ⟨𝑦, 𝑧⟩ ∈ I ↔ ¬ 𝑧 = 𝑦)
9892, 97anbi12i 628 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝑦, 𝑧⟩ ∈ ((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∧ ¬ ⟨𝑦, 𝑧⟩ ∈ I ) ↔ (∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦))
9988, 98bitr2i 276 . . . . . . . . . . . . . . . . . . . 20 ((∃𝑥 ∈ V (𝑦(𝐹 ↾ {𝐴})𝑥𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦) ↔ ⟨𝑦, 𝑧⟩ ∈ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
10087, 99sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ⟨𝑦, 𝑧⟩ ∈ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
101 snssi 4781 . . . . . . . . . . . . . . . . . . 19 (⟨𝑦, 𝑧⟩ ∈ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) → {⟨𝑦, 𝑧⟩} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
102 uniss 4888 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑦, 𝑧⟩} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) → {⟨𝑦, 𝑧⟩} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
103100, 101, 1023syl 18 . . . . . . . . . . . . . . . . . 18 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → {⟨𝑦, 𝑧⟩} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
10473, 103eqsstrrid 3996 . . . . . . . . . . . . . . . . 17 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ⟨𝑦, 𝑧⟩ ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
105104unissd 4890 . . . . . . . . . . . . . . . 16 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦, 𝑧⟩ ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
10671, 105eqsstrrid 3996 . . . . . . . . . . . . . . 15 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → {𝑦, 𝑧} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
10770, 52prss 4793 . . . . . . . . . . . . . . 15 ((𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) ↔ {𝑦, 𝑧} ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
108106, 107sylibr 234 . . . . . . . . . . . . . 14 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
109108simpld 494 . . . . . . . . . . . . 13 (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
110109ex 412 . . . . . . . . . . . 12 ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑦𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
11169, 110syl5 34 . . . . . . . . . . 11 ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
112111exlimiv 1929 . . . . . . . . . 10 (∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
11366, 112syl 17 . . . . . . . . 9 ((¬ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
114113ssrdv 3962 . . . . . . . 8 ((¬ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝐹 “ {𝐴}) ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
115 ssdif0 4339 . . . . . . . 8 ((𝐹 “ {𝐴}) ⊆ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ) ↔ ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
116114, 115sylib 218 . . . . . . 7 ((¬ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
117116ex 412 . . . . . 6 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅))
118 ndmima 6087 . . . . . . . . 9 𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ∅)
1199, 118eqtr3id 2783 . . . . . . . 8 𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝐹 “ {𝐴}) = ∅)
120119difeq1d 4098 . . . . . . 7 𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = (∅ ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
121 0dif 4378 . . . . . . 7 (∅ ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅
122120, 121eqtrdi 2785 . . . . . 6 𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
123117, 122pm2.61d1 180 . . . . 5 (¬ Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
124123unieqd 4893 . . . 4 (¬ Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
125124, 17eqtrdi 2785 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )) = ∅)
12626, 125eqtr4d 2772 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I )))
12725, 126pm2.61i 182 1 (𝐹𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  wrex 3059  Vcvv 3457  cdif 3921  wss 3924  c0 4306  {csn 4599  {cpr 4601  cop 4605   cuni 4880   class class class wbr 5116   I cid 5544  ccnv 5650  dom cdm 5651  cres 5653  cima 5654  ccom 5655  Rel wrel 5656  Fun wfun 6521  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-fv 6535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator