Step | Hyp | Ref
| Expression |
1 | | snidb 4593 |
. . . . 5
⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) |
2 | | fvres 6775 |
. . . . 5
⊢ (𝐴 ∈ {𝐴} → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
3 | 1, 2 | sylbi 216 |
. . . 4
⊢ (𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
4 | | fvprc 6748 |
. . . . 5
⊢ (¬
𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = ∅) |
5 | | fvprc 6748 |
. . . . 5
⊢ (¬
𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
6 | 4, 5 | eqtr4d 2781 |
. . . 4
⊢ (¬
𝐴 ∈ V → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
7 | 3, 6 | pm2.61i 182 |
. . 3
⊢ ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴) |
8 | | funfv 6837 |
. . . 4
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ∪ ((𝐹 ↾ {𝐴}) “ {𝐴})) |
9 | | resima 5914 |
. . . . . . 7
⊢ ((𝐹 ↾ {𝐴}) “ {𝐴}) = (𝐹 “ {𝐴}) |
10 | | dif0 4303 |
. . . . . . 7
⊢ ((𝐹 “ {𝐴}) ∖ ∅) = (𝐹 “ {𝐴}) |
11 | 9, 10 | eqtr4i 2769 |
. . . . . 6
⊢ ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ ∅) |
12 | | df-fun 6420 |
. . . . . . . . . . . . 13
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I )) |
13 | 12 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I ) |
14 | | ssdif0 4294 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ⊆ I ↔ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
15 | 13, 14 | sylib 217 |
. . . . . . . . . . 11
⊢ (Fun
(𝐹 ↾ {𝐴}) → (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
16 | 15 | unieqd 4850 |
. . . . . . . . . 10
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∪ ∅) |
17 | | uni0 4866 |
. . . . . . . . . 10
⊢ ∪ ∅ = ∅ |
18 | 16, 17 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
19 | 18 | unieqd 4850 |
. . . . . . . 8
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∪ ∅) |
20 | 19, 17 | eqtrdi 2795 |
. . . . . . 7
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) = ∅) |
21 | 20 | difeq2d 4053 |
. . . . . 6
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ((𝐹 “ {𝐴}) ∖ ∅)) |
22 | 11, 21 | eqtr4id 2798 |
. . . . 5
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
23 | 22 | unieqd 4850 |
. . . 4
⊢ (Fun
(𝐹 ↾ {𝐴}) → ∪ ((𝐹
↾ {𝐴}) “ {𝐴}) = ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
24 | 8, 23 | eqtrd 2778 |
. . 3
⊢ (Fun
(𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴})‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
25 | 7, 24 | eqtr3id 2793 |
. 2
⊢ (Fun
(𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
26 | | nfunsn 6793 |
. . 3
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
27 | | relres 5909 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐹 ↾ {𝐴}) |
28 | | dffun3 6429 |
. . . . . . . . . . . . . . 15
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦))) |
29 | 27, 28 | mpbiran 705 |
. . . . . . . . . . . . . 14
⊢ (Fun
(𝐹 ↾ {𝐴}) ↔ ∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦)) |
30 | | iman 401 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
31 | 30 | albii 1823 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∀𝑧 ¬ (𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
32 | | alnex 1785 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ¬
(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
33 | 31, 32 | bitri 274 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
34 | 33 | exbii 1851 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∃𝑦 ¬ ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
35 | | exnal 1830 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ¬
∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
36 | 34, 35 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
37 | 36 | albii 1823 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥∃𝑦∀𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑧 = 𝑦) ↔ ∀𝑥 ¬ ∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
38 | | alnex 1785 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ¬
∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ ¬ ∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
39 | 29, 37, 38 | 3bitrri 297 |
. . . . . . . . . . . . 13
⊢ (¬
∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ↔ Fun (𝐹 ↾ {𝐴})) |
40 | 39 | con1bii 356 |
. . . . . . . . . . . 12
⊢ (¬
Fun (𝐹 ↾ {𝐴}) ↔ ∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
41 | | sp 2178 |
. . . . . . . . . . . . 13
⊢
(∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
42 | 41 | eximi 1838 |
. . . . . . . . . . . 12
⊢
(∃𝑥∀𝑦∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
43 | 40, 42 | sylbi 216 |
. . . . . . . . . . 11
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
44 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → {𝐴} ⊆ dom (𝐹 ↾ {𝐴})) |
45 | | residm 5913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = (𝐹 ↾ {𝐴}) |
46 | 45 | dmeqi 5802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
((𝐹 ↾ {𝐴}) ↾ {𝐴}) = dom (𝐹 ↾ {𝐴}) |
47 | | ssdmres 5903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) ↔ dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴}) |
48 | 47 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom ((𝐹 ↾ {𝐴}) ↾ {𝐴}) = {𝐴}) |
49 | 46, 48 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝐴} ⊆ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
50 | 44, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
51 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
52 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
53 | 51, 52 | breldm 5806 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝑥 ∈ dom (𝐹 ↾ {𝐴})) |
54 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
(𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 ∈ {𝐴})) |
55 | | velsn 4574 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
56 | 54, 55 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
(𝐹 ↾ {𝐴}) = {𝐴} → (𝑥 ∈ dom (𝐹 ↾ {𝐴}) ↔ 𝑥 = 𝐴)) |
57 | 56 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
(𝐹 ↾ {𝐴}) = {𝐴} ∧ 𝑥 ∈ dom (𝐹 ↾ {𝐴})) → 𝑥 = 𝐴) |
58 | 50, 53, 57 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → 𝑥 = 𝐴) |
59 | 58 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧 ↔ 𝐴(𝐹 ↾ {𝐴})𝑧)) |
60 | 59 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ dom (𝐹 ↾ {𝐴}) ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧)) |
61 | 60 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧 → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧))) |
62 | 61 | pm2.43d 53 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝑥(𝐹 ↾ {𝐴})𝑧 → 𝐴(𝐹 ↾ {𝐴})𝑧)) |
63 | 62 | anim1d 610 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
64 | 63 | eximdv 1921 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
65 | 64 | exlimdv 1937 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (∃𝑥∃𝑧(𝑥(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦))) |
66 | 43, 65 | mpan9 506 |
. . . . . . . . . 10
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦)) |
67 | 9 | eleq2i 2830 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) ↔ 𝑦 ∈ (𝐹 “ {𝐴})) |
68 | | elimasni 5988 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ((𝐹 ↾ {𝐴}) “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦) |
69 | 67, 68 | sylbir 234 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐹 “ {𝐴}) → 𝐴(𝐹 ↾ {𝐴})𝑦) |
70 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
71 | 70, 52 | uniop 5423 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 〈𝑦, 𝑧〉 = {𝑦, 𝑧} |
72 | | opex 5373 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈𝑦, 𝑧〉 ∈ V |
73 | 72 | unisn 4858 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ {〈𝑦, 𝑧〉} = 〈𝑦, 𝑧〉 |
74 | 27 | brrelex1i 5634 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴(𝐹 ↾ {𝐴})𝑧 → 𝐴 ∈ V) |
75 | | brcnvg 5777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ V) → (𝑦◡(𝐹 ↾ {𝐴})𝐴 ↔ 𝐴(𝐹 ↾ {𝐴})𝑦)) |
76 | 70, 74, 75 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴(𝐹 ↾ {𝐴})𝑧 → (𝑦◡(𝐹 ↾ {𝐴})𝐴 ↔ 𝐴(𝐹 ↾ {𝐴})𝑦)) |
77 | 76 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦◡(𝐹 ↾ {𝐴})𝐴) |
78 | 74 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧) → 𝐴 ∈ V) |
79 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝐴 → (𝑦◡(𝐹 ↾ {𝐴})𝑥 ↔ 𝑦◡(𝐹 ↾ {𝐴})𝐴)) |
80 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝐴 → (𝑥(𝐹 ↾ {𝐴})𝑧 ↔ 𝐴(𝐹 ↾ {𝐴})𝑧)) |
81 | 79, 80 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝐴 → ((𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ↔ (𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧))) |
82 | 81 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ V ∧ (𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧)) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
83 | 78, 82 | mpancom 684 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦◡(𝐹 ↾ {𝐴})𝐴 ∧ 𝐴(𝐹 ↾ {𝐴})𝑧) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
84 | 83 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝑦◡(𝐹 ↾ {𝐴})𝐴) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
85 | 77, 84 | syldan 590 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
86 | 85 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) ∧ ¬ 𝑧 = 𝑦) → (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
87 | 86 | an32s 648 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
88 | | eldif 3893 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ↔ (〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∧ ¬ 〈𝑦, 𝑧〉 ∈ I )) |
89 | | rexv 3447 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑥 ∈ V
(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ↔ ∃𝑥(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
90 | 70, 52 | brco 5768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))𝑧 ↔ ∃𝑥(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
91 | | df-br 5071 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴}))) |
92 | 89, 90, 91 | 3bitr2ri 299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ↔ ∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧)) |
93 | 52 | ideq 5750 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
94 | | df-br 5071 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 I 𝑧 ↔ 〈𝑦, 𝑧〉 ∈ I ) |
95 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
96 | 93, 94, 95 | 3bitr3i 300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑦, 𝑧〉 ∈ I ↔ 𝑧 = 𝑦) |
97 | 96 | notbii 319 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
〈𝑦, 𝑧〉 ∈ I ↔ ¬ 𝑧 = 𝑦) |
98 | 92, 97 | anbi12i 626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈𝑦, 𝑧〉 ∈ ((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∧ ¬ 〈𝑦, 𝑧〉 ∈ I ) ↔ (∃𝑥 ∈ V (𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦)) |
99 | 88, 98 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃𝑥 ∈ V
(𝑦◡(𝐹 ↾ {𝐴})𝑥 ∧ 𝑥(𝐹 ↾ {𝐴})𝑧) ∧ ¬ 𝑧 = 𝑦) ↔ 〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
100 | 87, 99 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
101 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑦, 𝑧〉 ∈ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) → {〈𝑦, 𝑧〉} ⊆ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
102 | | uniss 4844 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈𝑦, 𝑧〉} ⊆ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) → ∪ {〈𝑦, 𝑧〉} ⊆ ∪
(((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
103 | 100, 101,
102 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∪
{〈𝑦, 𝑧〉} ⊆ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
104 | 73, 103 | eqsstrrid 3966 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 〈𝑦, 𝑧〉 ⊆ ∪
(((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
105 | 104 | unissd 4846 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → ∪
〈𝑦, 𝑧〉 ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
106 | 71, 105 | eqsstrrid 3966 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → {𝑦, 𝑧} ⊆ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
107 | 70, 52 | prss 4750 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) ↔ {𝑦, 𝑧} ⊆ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
108 | 106, 107 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → (𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
109 | 108 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) ∧ 𝐴(𝐹 ↾ {𝐴})𝑦) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
110 | 109 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝐴(𝐹 ↾ {𝐴})𝑦 → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
111 | 69, 110 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
112 | 111 | exlimiv 1934 |
. . . . . . . . . 10
⊢
(∃𝑧(𝐴(𝐹 ↾ {𝐴})𝑧 ∧ ¬ 𝑧 = 𝑦) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
113 | 66, 112 | syl 17 |
. . . . . . . . 9
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝑦 ∈ (𝐹 “ {𝐴}) → 𝑦 ∈ ∪ ∪ (((𝐹
↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
114 | 113 | ssrdv 3923 |
. . . . . . . 8
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → (𝐹 “ {𝐴}) ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |
115 | | ssdif0 4294 |
. . . . . . . 8
⊢ ((𝐹 “ {𝐴}) ⊆ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ) ↔ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
116 | 114, 115 | sylib 217 |
. . . . . . 7
⊢ ((¬
Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
117 | 116 | ex 412 |
. . . . . 6
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) =
∅)) |
118 | | ndmima 6000 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 ↾ {𝐴}) “ {𝐴}) = ∅) |
119 | 9, 118 | eqtr3id 2793 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → (𝐹 “ {𝐴}) = ∅) |
120 | 119 | difeq1d 4052 |
. . . . . . 7
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = (∅ ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
121 | | 0dif 4332 |
. . . . . . 7
⊢ (∅
∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅ |
122 | 120, 121 | eqtrdi 2795 |
. . . . . 6
⊢ (¬
𝐴 ∈ dom (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
123 | 117, 122 | pm2.61d1 180 |
. . . . 5
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
124 | 123 | unieqd 4850 |
. . . 4
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∪ ∅) |
125 | 124, 17 | eqtrdi 2795 |
. . 3
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → ∪ ((𝐹
“ {𝐴}) ∖ ∪ ∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) = ∅) |
126 | 26, 125 | eqtr4d 2781 |
. 2
⊢ (¬
Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I ))) |
127 | 25, 126 | pm2.61i 182 |
1
⊢ (𝐹‘𝐴) = ∪ ((𝐹 “ {𝐴}) ∖ ∪
∪ (((𝐹 ↾ {𝐴}) ∘ ◡(𝐹 ↾ {𝐴})) ∖ I )) |