Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snen1el Structured version   Visualization version   GIF version

Theorem snen1el 42833
Description: A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
snen1el ({𝐴} ≈ 1o𝐴 ∈ {𝐴})

Proof of Theorem snen1el
StepHypRef Expression
1 snen1g 42832 . 2 ({𝐴} ≈ 1o𝐴 ∈ V)
2 snidb 4658 . 2 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
31, 2bitri 275 1 ({𝐴} ≈ 1o𝐴 ∈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  Vcvv 3468  {csn 4623   class class class wbr 5141  1oc1o 8457  cen 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1o 8464  df-en 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator