MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimed Structured version   Visualization version   GIF version

Theorem spimed 2388
Description: Deduction version of spime 2389. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use spimedv 2193 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
spimed.1 (𝜒 → Ⅎ𝑥𝜑)
spimed.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimed (𝜒 → (𝜑 → ∃𝑥𝜓))

Proof of Theorem spimed
StepHypRef Expression
1 spimed.1 . . 3 (𝜒 → Ⅎ𝑥𝜑)
21nf5rd 2192 . 2 (𝜒 → (𝜑 → ∀𝑥𝜑))
3 ax6e 2383 . . . 4 𝑥 𝑥 = 𝑦
4 spimed.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4eximii 1840 . . 3 𝑥(𝜑𝜓)
6519.35i 1882 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
72, 6syl6 35 1 (𝜒 → (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  spime  2389  2ax6elem  2470
  Copyright terms: Public domain W3C validator