Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spsbcdi Structured version   Visualization version   GIF version

Theorem spsbcdi 36203
Description: A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
spsbcdi.1 𝐴 ∈ V
spsbcdi.2 (𝜑 → ∀𝑥𝜒)
spsbcdi.3 ([𝐴 / 𝑥]𝜒𝜓)
Assertion
Ref Expression
spsbcdi (𝜑𝜓)

Proof of Theorem spsbcdi
StepHypRef Expression
1 spsbcdi.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (𝜑𝐴 ∈ V)
3 spsbcdi.2 . . 3 (𝜑 → ∀𝑥𝜒)
42, 3spsbcd 3725 . 2 (𝜑[𝐴 / 𝑥]𝜒)
5 spsbcdi.3 . 2 ([𝐴 / 𝑥]𝜒𝜓)
64, 5sylib 217 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator