Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcexfi | Structured version Visualization version GIF version |
Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
sbcexfi.1 | ⊢ Ⅎ𝑦𝐴 |
sbcexfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcexfi | ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcexfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | sbcexf 36371 | . 2 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
3 | sbcexfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑦[𝐴 / 𝑥]𝜑 ↔ ∃𝑦𝜓) |
5 | 2, 4 | bitri 274 | 1 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1780 Ⅎwnfc 2884 [wsbc 3726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3443 df-sbc 3727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |