Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcexfi Structured version   Visualization version   GIF version

Theorem sbcexfi 36373
Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
sbcexfi.1 𝑦𝐴
sbcexfi.2 ([𝐴 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbcexfi ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcexfi
StepHypRef Expression
1 sbcexfi.1 . . 3 𝑦𝐴
21sbcexf 36371 . 2 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
3 sbcexfi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜓)
43exbii 1849 . 2 (∃𝑦[𝐴 / 𝑥]𝜑 ↔ ∃𝑦𝜓)
52, 4bitri 274 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1780  wnfc 2884  [wsbc 3726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-v 3443  df-sbc 3727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator