Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcexfi Structured version   Visualization version   GIF version

Theorem sbcexfi 36202
Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
sbcexfi.1 𝑦𝐴
sbcexfi.2 ([𝐴 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbcexfi ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcexfi
StepHypRef Expression
1 sbcexfi.1 . . 3 𝑦𝐴
21sbcexf 36200 . 2 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
3 sbcexfi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜓)
43exbii 1851 . 2 (∃𝑦[𝐴 / 𝑥]𝜑 ↔ ∃𝑦𝜓)
52, 4bitri 274 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1783  wnfc 2886  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator