![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcexfi | Structured version Visualization version GIF version |
Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
sbcexfi.1 | ⊢ Ⅎ𝑦𝐴 |
sbcexfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcexfi | ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcexfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | sbcexf 38068 | . 2 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
3 | sbcexfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
4 | 3 | exbii 1846 | . 2 ⊢ (∃𝑦[𝐴 / 𝑥]𝜑 ↔ ∃𝑦𝜓) |
5 | 2, 4 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 Ⅎwnfc 2893 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |