| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcexfi | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| sbcexfi.1 | ⊢ Ⅎ𝑦𝐴 |
| sbcexfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcexfi | ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcexfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | sbcexf 38134 | . 2 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
| 3 | sbcexfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
| 4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑦[𝐴 / 𝑥]𝜑 ↔ ∃𝑦𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 Ⅎwnfc 2877 [wsbc 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |