| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrimii | Structured version Visualization version GIF version | ||
| Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| alrimii.1 | ⊢ Ⅎ𝑦𝜑 |
| alrimii.2 | ⊢ (𝜑 → 𝜓) |
| alrimii.3 | ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) |
| alrimii.4 | ⊢ Ⅎ𝑦𝜒 |
| Ref | Expression |
|---|---|
| alrimii | ⊢ (𝜑 → ∀𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimii.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | alrimii.2 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | alrimii.3 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → [𝑦 / 𝑥]𝜒) |
| 5 | 1, 4 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜒) |
| 6 | nfsbc1v 3781 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜒 | |
| 7 | alrimii.4 | . . 3 ⊢ Ⅎ𝑦𝜒 | |
| 8 | sbceq2a 3773 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜒 ↔ 𝜒)) | |
| 9 | 6, 7, 8 | cbvalv1 2339 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜒 ↔ ∀𝑥𝜒) |
| 10 | 5, 9 | sylib 218 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsbc 3761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-sbc 3762 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |