Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrimii Structured version   Visualization version   GIF version

Theorem alrimii 37290
Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
alrimii.1 𝑦𝜑
alrimii.2 (𝜑𝜓)
alrimii.3 ([𝑦 / 𝑥]𝜒𝜓)
alrimii.4 𝑦𝜒
Assertion
Ref Expression
alrimii (𝜑 → ∀𝑥𝜒)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem alrimii
StepHypRef Expression
1 alrimii.1 . . 3 𝑦𝜑
2 alrimii.2 . . . 4 (𝜑𝜓)
3 alrimii.3 . . . 4 ([𝑦 / 𝑥]𝜒𝜓)
42, 3sylibr 233 . . 3 (𝜑[𝑦 / 𝑥]𝜒)
51, 4alrimi 2204 . 2 (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜒)
6 nfsbc1v 3796 . . 3 𝑥[𝑦 / 𝑥]𝜒
7 alrimii.4 . . 3 𝑦𝜒
8 sbceq2a 3788 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜒𝜒))
96, 7, 8cbvalv1 2335 . 2 (∀𝑦[𝑦 / 𝑥]𝜒 ↔ ∀𝑥𝜒)
105, 9sylib 217 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1783  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-sbc 3777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator