![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrimii | Structured version Visualization version GIF version |
Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
alrimii.1 | ⊢ Ⅎ𝑦𝜑 |
alrimii.2 | ⊢ (𝜑 → 𝜓) |
alrimii.3 | ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) |
alrimii.4 | ⊢ Ⅎ𝑦𝜒 |
Ref | Expression |
---|---|
alrimii | ⊢ (𝜑 → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimii.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | alrimii.2 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | alrimii.3 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) | |
4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → [𝑦 / 𝑥]𝜒) |
5 | 1, 4 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜒) |
6 | nfsbc1v 3818 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜒 | |
7 | alrimii.4 | . . 3 ⊢ Ⅎ𝑦𝜒 | |
8 | sbceq2a 3810 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜒 ↔ 𝜒)) | |
9 | 6, 7, 8 | cbvalv1 2340 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜒 ↔ ∀𝑥𝜒) |
10 | 5, 9 | sylib 218 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 [wsbc 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-sbc 3799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |