| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrimii | Structured version Visualization version GIF version | ||
| Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| alrimii.1 | ⊢ Ⅎ𝑦𝜑 |
| alrimii.2 | ⊢ (𝜑 → 𝜓) |
| alrimii.3 | ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) |
| alrimii.4 | ⊢ Ⅎ𝑦𝜒 |
| Ref | Expression |
|---|---|
| alrimii | ⊢ (𝜑 → ∀𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimii.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | alrimii.2 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | alrimii.3 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → [𝑦 / 𝑥]𝜒) |
| 5 | 1, 4 | alrimi 2212 | . 2 ⊢ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜒) |
| 6 | nfsbc1v 3790 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜒 | |
| 7 | alrimii.4 | . . 3 ⊢ Ⅎ𝑦𝜒 | |
| 8 | sbceq2a 3782 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜒 ↔ 𝜒)) | |
| 9 | 6, 7, 8 | cbvalv1 2341 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜒 ↔ ∀𝑥𝜒) |
| 10 | 5, 9 | sylib 218 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-sbc 3771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |