Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrimii Structured version   Visualization version   GIF version

Theorem alrimii 38169
Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
alrimii.1 𝑦𝜑
alrimii.2 (𝜑𝜓)
alrimii.3 ([𝑦 / 𝑥]𝜒𝜓)
alrimii.4 𝑦𝜒
Assertion
Ref Expression
alrimii (𝜑 → ∀𝑥𝜒)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem alrimii
StepHypRef Expression
1 alrimii.1 . . 3 𝑦𝜑
2 alrimii.2 . . . 4 (𝜑𝜓)
3 alrimii.3 . . . 4 ([𝑦 / 𝑥]𝜒𝜓)
42, 3sylibr 234 . . 3 (𝜑[𝑦 / 𝑥]𝜒)
51, 4alrimi 2216 . 2 (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜒)
6 nfsbc1v 3756 . . 3 𝑥[𝑦 / 𝑥]𝜒
7 alrimii.4 . . 3 𝑦𝜒
8 sbceq2a 3748 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜒𝜒))
96, 7, 8cbvalv1 2341 . 2 (∀𝑦[𝑦 / 𝑥]𝜒 ↔ ∀𝑥𝜒)
105, 9sylib 218 1 (𝜑 → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wnf 1784  [wsbc 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-sbc 3737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator