![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spsbcd | Structured version Visualization version GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2066 and rspsbc 3888. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spsbcd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
spsbcd.2 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
spsbcd | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbcd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | spsbcd.2 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
3 | spsbc 3804 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2106 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: ovmpodxf 7583 ex-natded9.26 30448 spsbcdi 38105 ovmpordxf 48184 |
Copyright terms: Public domain | W3C validator |