Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsbcd | Structured version Visualization version GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2071 and rspsbc 3812. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spsbcd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
spsbcd.2 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
spsbcd | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbcd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | spsbcd.2 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
3 | spsbc 3729 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: ovmpodxf 7423 ex-natded9.26 28783 spsbcdi 36276 ovmpordxf 45674 |
Copyright terms: Public domain | W3C validator |