MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbcd Structured version   Visualization version   GIF version

Theorem spsbcd 3725
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2072 and rspsbc 3808. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1 (𝜑𝐴𝑉)
spsbcd.2 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
spsbcd (𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2 (𝜑𝐴𝑉)
2 spsbcd.2 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 3724 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
41, 2, 3sylc 65 1 (𝜑[𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  ovmpodxf  7401  ex-natded9.26  28684  spsbcdi  36203  ovmpordxf  45562
  Copyright terms: Public domain W3C validator