| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbcd | Structured version Visualization version GIF version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2071 and rspsbc 3825. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| spsbcd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| spsbcd.2 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| spsbcd | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbcd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | spsbcd.2 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 3 | spsbc 3749 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: ovmpodxf 7491 ex-natded9.26 30391 spsbcdi 38158 ovmpordxf 48370 |
| Copyright terms: Public domain | W3C validator |