Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbcd Structured version   Visualization version   GIF version

Theorem spsbcd 3737
 Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2073 and rspsbc 3811. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1 (𝜑𝐴𝑉)
spsbcd.2 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
spsbcd (𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2 (𝜑𝐴𝑉)
2 spsbcd.2 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 3736 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
41, 2, 3sylc 65 1 (𝜑[𝐴 / 𝑥]𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536   ∈ wcel 2112  [wsbc 3723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-sbc 3724 This theorem is referenced by:  ovmpodxf  7283  ex-natded9.26  28208  spsbcdi  35555  ovmpordxf  44733
 Copyright terms: Public domain W3C validator