MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssexnelpss Structured version   Visualization version   GIF version

Theorem ssexnelpss 4113
Description: If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020.)
Assertion
Ref Expression
ssexnelpss ((𝐴𝐵 ∧ ∃𝑥𝐵 𝑥𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssexnelpss
StepHypRef Expression
1 df-nel 3047 . . . 4 (𝑥𝐴 ↔ ¬ 𝑥𝐴)
2 ssnelpss 4111 . . . . 5 (𝐴𝐵 → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → 𝐴𝐵))
32expdimp 453 . . . 4 ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴𝐴𝐵))
41, 3biimtrid 241 . . 3 ((𝐴𝐵𝑥𝐵) → (𝑥𝐴𝐴𝐵))
54rexlimdva 3155 . 2 (𝐴𝐵 → (∃𝑥𝐵 𝑥𝐴𝐴𝐵))
65imp 407 1 ((𝐴𝐵 ∧ ∃𝑥𝐵 𝑥𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wnel 3046  wrex 3070  wss 3948  wpss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-rex 3071  df-pss 3967
This theorem is referenced by:  sgrpssmgm  18813  mndsssgrp  18814
  Copyright terms: Public domain W3C validator