MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssexnelpss Structured version   Visualization version   GIF version

Theorem ssexnelpss 4048
Description: If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020.)
Assertion
Ref Expression
ssexnelpss ((𝐴𝐵 ∧ ∃𝑥𝐵 𝑥𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssexnelpss
StepHypRef Expression
1 df-nel 3050 . . . 4 (𝑥𝐴 ↔ ¬ 𝑥𝐴)
2 ssnelpss 4046 . . . . 5 (𝐴𝐵 → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → 𝐴𝐵))
32expdimp 453 . . . 4 ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴𝐴𝐵))
41, 3syl5bi 241 . . 3 ((𝐴𝐵𝑥𝐵) → (𝑥𝐴𝐴𝐵))
54rexlimdva 3213 . 2 (𝐴𝐵 → (∃𝑥𝐵 𝑥𝐴𝐴𝐵))
65imp 407 1 ((𝐴𝐵 ∧ ∃𝑥𝐵 𝑥𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wnel 3049  wrex 3065  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-pss 3906
This theorem is referenced by:  sgrpssmgm  18572  mndsssgrp  18573
  Copyright terms: Public domain W3C validator