| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdif3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) (Proof shortened by SN, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| dfdif3 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3906 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 2 | nelb 3208 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑦 ≠ 𝑥) | |
| 3 | necom 2981 | . . . 4 ⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) | |
| 4 | 3 | ralbii 3078 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ≠ 𝑥 ↔ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
| 5 | 2, 4 | bitri 275 | . 2 ⊢ (¬ 𝑥 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
| 6 | 1, 5 | rabbieq 3403 | 1 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-dif 3900 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |