MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif3 Structured version   Visualization version   GIF version

Theorem dfdif3 4140
Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) (Proof shortened by SN, 15-Aug-2025.)
Assertion
Ref Expression
dfdif3 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfdif3
StepHypRef Expression
1 dfdif2 3985 . 2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
2 nelb 3240 . . 3 𝑥𝐵 ↔ ∀𝑦𝐵 𝑦𝑥)
3 necom 3000 . . . 4 (𝑦𝑥𝑥𝑦)
43ralbii 3099 . . 3 (∀𝑦𝐵 𝑦𝑥 ↔ ∀𝑦𝐵 𝑥𝑦)
52, 4bitri 275 . 2 𝑥𝐵 ↔ ∀𝑦𝐵 𝑥𝑦)
61, 5rabbieq 3452 1 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-dif 3979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator