MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif3 Structured version   Visualization version   GIF version

Theorem dfdif3 4045
Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
Assertion
Ref Expression
dfdif3 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfdif3
StepHypRef Expression
1 dfdif2 3892 . 2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
2 ax6ev 1974 . . . . . . 7 𝑦 𝑦 = 𝑥
32biantrur 530 . . . . . 6 𝑥𝐵 ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
4 19.41v 1954 . . . . . 6 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 277 . . . . 5 𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
6 sbalex 2238 . . . . 5 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵))
7 equcom 2022 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
87imbi1i 349 . . . . . . 7 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑥𝐵))
9 eleq1w 2821 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
109notbid 317 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝐵 ↔ ¬ 𝑦𝐵))
1110pm5.74i 270 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑦𝐵))
12 con2b 359 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑦𝐵) ↔ (𝑦𝐵 → ¬ 𝑥 = 𝑦))
13 df-ne 2943 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
1413bicomi 223 . . . . . . . . 9 𝑥 = 𝑦𝑥𝑦)
1514imbi2i 335 . . . . . . . 8 ((𝑦𝐵 → ¬ 𝑥 = 𝑦) ↔ (𝑦𝐵𝑥𝑦))
1611, 12, 153bitri 296 . . . . . . 7 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
178, 16bitri 274 . . . . . 6 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
1817albii 1823 . . . . 5 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
195, 6, 183bitri 296 . . . 4 𝑥𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
20 df-ral 3068 . . . 4 (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
2119, 20bitr4i 277 . . 3 𝑥𝐵 ↔ ∀𝑦𝐵 𝑥𝑦)
2221rabbii 3397 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
231, 22eqtri 2766 1 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  {crab 3067  cdif 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-dif 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator