|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssnelpssd | Structured version Visualization version GIF version | ||
| Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4113. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| ssnelpssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| ssnelpssd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) | 
| ssnelpssd.3 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | 
| Ref | Expression | 
|---|---|
| ssnelpssd | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssnelpssd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 2 | ssnelpssd.3 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 3 | ssnelpssd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | ssnelpss 4113 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | 
| 6 | 1, 2, 5 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 ⊊ wpss 3951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-ne 2940 df-pss 3970 | 
| This theorem is referenced by: canth4 10688 mrieqv2d 17683 symgpssefmnd 19414 symggen 19489 pgpfac1lem1 20095 pgpfaclem2 20103 ssdifidlprm 33487 | 
| Copyright terms: Public domain | W3C validator |