MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnelpssd Structured version   Visualization version   GIF version

Theorem ssnelpssd 4063
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4062. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssnelpssd.1 (𝜑𝐴𝐵)
ssnelpssd.2 (𝜑𝐶𝐵)
ssnelpssd.3 (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
ssnelpssd (𝜑𝐴𝐵)

Proof of Theorem ssnelpssd
StepHypRef Expression
1 ssnelpssd.2 . 2 (𝜑𝐶𝐵)
2 ssnelpssd.3 . 2 (𝜑 → ¬ 𝐶𝐴)
3 ssnelpssd.1 . . 3 (𝜑𝐴𝐵)
4 ssnelpss 4062 . . 3 (𝐴𝐵 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))
53, 4syl 17 . 2 (𝜑 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))
61, 2, 5mp2and 699 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2110  wss 3900  wpss 3901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2722  df-clel 2804  df-ne 2927  df-pss 3920
This theorem is referenced by:  canth4  10530  mrieqv2d  17537  symgpssefmnd  19301  symggen  19375  pgpfac1lem1  19981  pgpfaclem2  19989  ssdifidlprm  33413
  Copyright terms: Public domain W3C validator