| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnelpssd | Structured version Visualization version GIF version | ||
| Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4094. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssnelpssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssnelpssd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| ssnelpssd.3 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ssnelpssd | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnelpssd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 2 | ssnelpssd.3 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 3 | ssnelpssd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | ssnelpss 4094 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
| 6 | 1, 2, 5 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 ⊊ wpss 3932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-ne 2934 df-pss 3951 |
| This theorem is referenced by: canth4 10666 mrieqv2d 17656 symgpssefmnd 19382 symggen 19456 pgpfac1lem1 20062 pgpfaclem2 20070 ssdifidlprm 33478 |
| Copyright terms: Public domain | W3C validator |