Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssnelpss | Structured version Visualization version GIF version |
Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
ssnelpss | ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2864 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐵 = 𝐴) | |
2 | eqcom 2745 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 1, 2 | sylnib 327 | . 2 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐴 = 𝐵) |
4 | dfpss2 4016 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
5 | 4 | baibr 536 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 3, 5 | syl5ib 243 | 1 ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ne 2943 df-pss 3902 |
This theorem is referenced by: ssnelpssd 4043 ssexnelpss 4044 isfin4p1 10002 canthp1lem2 10340 nqpr 10701 uzindi 13630 nthruc 15889 nthruz 15890 vitali 24682 onpsstopbas 34546 |
Copyright terms: Public domain | W3C validator |