![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnelpss | Structured version Visualization version GIF version |
Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
ssnelpss | ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2854 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐵 = 𝐴) | |
2 | eqcom 2735 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 1, 2 | sylnib 327 | . 2 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐴 = 𝐵) |
4 | dfpss2 4085 | . . 3 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
5 | 4 | baibr 535 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 3, 5 | imbitrid 243 | 1 ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2720 df-clel 2806 df-ne 2938 df-pss 3968 |
This theorem is referenced by: ssnelpssd 4112 ssexnelpss 4113 isfin4p1 10348 canthp1lem2 10686 nqpr 11047 uzindi 13989 nthruc 16238 nthruz 16239 vitali 25570 onpsstopbas 35955 |
Copyright terms: Public domain | W3C validator |