| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ontopbas | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| ontopbas | ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon 6382 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
| 2 | onelon 6382 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
| 3 | 1, 2 | anim12dan 619 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On)) |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On))) |
| 5 | onin 6388 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∩ 𝑦) ∈ On) | |
| 6 | 4, 5 | syl6 35 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ On)) |
| 7 | 6 | anc2ri 556 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On))) |
| 8 | inss1 4217 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
| 9 | 8 | jctl 523 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 12 | ontr2 6405 | . . . 4 ⊢ (((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) | |
| 13 | 7, 11, 12 | syl6c 70 | . . 3 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) |
| 14 | 13 | ralrimivv 3186 | . 2 ⊢ (𝐵 ∈ On → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) |
| 15 | fiinbas 22895 | . 2 ⊢ ((𝐵 ∈ On ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | |
| 16 | 14, 15 | mpdan 687 | 1 ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ⊆ wss 3931 Oncon0 6357 TopBasesctb 22888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-bases 22889 |
| This theorem is referenced by: onsstopbas 36452 onsuctop 36456 |
| Copyright terms: Public domain | W3C validator |