![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ontopbas | Structured version Visualization version GIF version |
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.) |
Ref | Expression |
---|---|
ontopbas | ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 6386 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
2 | onelon 6386 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
3 | 1, 2 | anim12dan 620 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On)) |
4 | 3 | ex 414 | . . . . . 6 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On))) |
5 | onin 6392 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∩ 𝑦) ∈ On) | |
6 | 4, 5 | syl6 35 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ On)) |
7 | 6 | anc2ri 558 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On))) |
8 | inss1 4227 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
9 | 8 | jctl 525 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
10 | 9 | adantr 482 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
12 | ontr2 6408 | . . . 4 ⊢ (((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) | |
13 | 7, 11, 12 | syl6c 70 | . . 3 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) |
14 | 13 | ralrimivv 3199 | . 2 ⊢ (𝐵 ∈ On → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) |
15 | fiinbas 22437 | . 2 ⊢ ((𝐵 ∈ On ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | |
16 | 14, 15 | mpdan 686 | 1 ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 ∩ cin 3946 ⊆ wss 3947 Oncon0 6361 TopBasesctb 22430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-bases 22431 |
This theorem is referenced by: onsstopbas 35252 onsuctop 35256 |
Copyright terms: Public domain | W3C validator |