Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Structured version   Visualization version   GIF version

Theorem ontopbas 35251
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas (𝐵 ∈ On → 𝐵 ∈ TopBases)

Proof of Theorem ontopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6386 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
2 onelon 6386 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
31, 2anim12dan 620 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
43ex 414 . . . . . 6 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On)))
5 onin 6392 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦) ∈ On)
64, 5syl6 35 . . . . 5 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ On))
76anc2ri 558 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On)))
8 inss1 4227 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
98jctl 525 . . . . . 6 (𝑥𝐵 → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
109adantr 482 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
1110a1i 11 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵)))
12 ontr2 6408 . . . 4 (((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥𝑦) ⊆ 𝑥𝑥𝐵) → (𝑥𝑦) ∈ 𝐵))
137, 11, 12syl6c 70 . . 3 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ 𝐵))
1413ralrimivv 3199 . 2 (𝐵 ∈ On → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵)
15 fiinbas 22437 . 2 ((𝐵 ∈ On ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
1614, 15mpdan 686 1 (𝐵 ∈ On → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wral 3062  cin 3946  wss 3947  Oncon0 6361  TopBasesctb 22430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-bases 22431
This theorem is referenced by:  onsstopbas  35252  onsuctop  35256
  Copyright terms: Public domain W3C validator