Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Structured version   Visualization version   GIF version

Theorem ontopbas 34617
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas (𝐵 ∈ On → 𝐵 ∈ TopBases)

Proof of Theorem ontopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6291 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
2 onelon 6291 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
31, 2anim12dan 619 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
43ex 413 . . . . . 6 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On)))
5 onin 6297 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦) ∈ On)
64, 5syl6 35 . . . . 5 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ On))
76anc2ri 557 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On)))
8 inss1 4162 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
98jctl 524 . . . . . 6 (𝑥𝐵 → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
109adantr 481 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
1110a1i 11 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵)))
12 ontr2 6313 . . . 4 (((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥𝑦) ⊆ 𝑥𝑥𝐵) → (𝑥𝑦) ∈ 𝐵))
137, 11, 12syl6c 70 . . 3 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ 𝐵))
1413ralrimivv 3122 . 2 (𝐵 ∈ On → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵)
15 fiinbas 22102 . 2 ((𝐵 ∈ On ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
1614, 15mpdan 684 1 (𝐵 ∈ On → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  cin 3886  wss 3887  Oncon0 6266  TopBasesctb 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-bases 22096
This theorem is referenced by:  onsstopbas  34618  onsuctop  34622
  Copyright terms: Public domain W3C validator