![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ontopbas | Structured version Visualization version GIF version |
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.) |
Ref | Expression |
---|---|
ontopbas | ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 6399 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
2 | onelon 6399 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
3 | 1, 2 | anim12dan 617 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On)) |
4 | 3 | ex 411 | . . . . . 6 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On))) |
5 | onin 6405 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∩ 𝑦) ∈ On) | |
6 | 4, 5 | syl6 35 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ On)) |
7 | 6 | anc2ri 555 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On))) |
8 | inss1 4231 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
9 | 8 | jctl 522 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
10 | 9 | adantr 479 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
12 | ontr2 6421 | . . . 4 ⊢ (((𝑥 ∩ 𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∩ 𝑦) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) | |
13 | 7, 11, 12 | syl6c 70 | . . 3 ⊢ (𝐵 ∈ On → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) |
14 | 13 | ralrimivv 3196 | . 2 ⊢ (𝐵 ∈ On → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) |
15 | fiinbas 22883 | . 2 ⊢ ((𝐵 ∈ On ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | |
16 | 14, 15 | mpdan 685 | 1 ⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3058 ∩ cin 3948 ⊆ wss 3949 Oncon0 6374 TopBasesctb 22876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-bases 22877 |
This theorem is referenced by: onsstopbas 35954 onsuctop 35958 |
Copyright terms: Public domain | W3C validator |