Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Structured version   Visualization version   GIF version

Theorem ontopbas 33010
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas (𝐵 ∈ On → 𝐵 ∈ TopBases)

Proof of Theorem ontopbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6001 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
2 onelon 6001 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
31, 2anim12dan 612 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
43ex 403 . . . . . 6 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥 ∈ On ∧ 𝑦 ∈ On)))
5 onin 6007 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦) ∈ On)
64, 5syl6 35 . . . . 5 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ On))
76anc2ri 552 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On)))
8 inss1 4053 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
98jctl 519 . . . . . 6 (𝑥𝐵 → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
109adantr 474 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵))
1110a1i 11 . . . 4 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ⊆ 𝑥𝑥𝐵)))
12 ontr2 6023 . . . 4 (((𝑥𝑦) ∈ On ∧ 𝐵 ∈ On) → (((𝑥𝑦) ⊆ 𝑥𝑥𝐵) → (𝑥𝑦) ∈ 𝐵))
137, 11, 12syl6c 70 . . 3 (𝐵 ∈ On → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ∈ 𝐵))
1413ralrimivv 3152 . 2 (𝐵 ∈ On → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵)
15 fiinbas 21164 . 2 ((𝐵 ∈ On ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
1614, 15mpdan 677 1 (𝐵 ∈ On → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  wral 3090  cin 3791  wss 3792  Oncon0 5976  TopBasesctb 21157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-ord 5979  df-on 5980  df-bases 21158
This theorem is referenced by:  onsstopbas  33011  onsuctop  33015
  Copyright terms: Public domain W3C validator