| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab0orv | Structured version Visualization version GIF version | ||
| Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) Reduce axiom usage. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| ab0orv | ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nf3 1787 | . . 3 ⊢ (Ⅎ𝑦𝜑 ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑) |
| 4 | biidd 262 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 5 | 4 | eqabcbw 2805 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝜑 ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 6 | dfv2 3439 | . . . . 5 ⊢ V = {𝑥 ∣ ⊤} | |
| 7 | 6 | eqeq2i 2744 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = V ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
| 8 | vextru 2716 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥 ∣ ⊤} | |
| 9 | 8 | tbt 369 | . . . . 5 ⊢ (𝜑 ↔ (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 10 | 9 | albii 1820 | . . . 4 ⊢ (∀𝑦𝜑 ↔ ∀𝑦(𝜑 ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 11 | 5, 7, 10 | 3bitr4i 303 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦𝜑) |
| 12 | 4 | ab0w 4326 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜑) |
| 13 | 11, 12 | orbi12i 914 | . 2 ⊢ (({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑)) |
| 14 | 3, 13 | mpbir 231 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ⊤wtru 1542 Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-v 3438 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |