Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0orv Structured version   Visualization version   GIF version

Theorem ab0orv 4317
 Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.)
Assertion
Ref Expression
ab0orv ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ab0orv
StepHypRef Expression
1 nfv 1916 . 2 𝑥𝜑
2 dfnf5 4316 . 2 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
31, 2mpbi 233 1 ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 844   = wceq 1538  Ⅎwnf 1785  {cab 2802  Vcvv 3480  ∅c0 4275 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-v 3482  df-dif 3922  df-nul 4276 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator