Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑦𝜑 |
2 | | nf3 1790 |
. . 3
⊢
(Ⅎ𝑦𝜑 ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑)) |
3 | 1, 2 | mpbi 229 |
. 2
⊢
(∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑) |
4 | | tbtru 1547 |
. . . . . 6
⊢ (𝜑 ↔ (𝜑 ↔ ⊤)) |
5 | | df-clab 2716 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) |
6 | | sbv 2092 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
7 | 5, 6 | bitr2i 275 |
. . . . . . 7
⊢ (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
8 | | tru 1543 |
. . . . . . . 8
⊢
⊤ |
9 | | vextru 2722 |
. . . . . . . 8
⊢ 𝑦 ∈ {𝑥 ∣ ⊤} |
10 | 8, 9 | 2th 263 |
. . . . . . 7
⊢ (⊤
↔ 𝑦 ∈ {𝑥 ∣
⊤}) |
11 | 7, 10 | bibi12i 339 |
. . . . . 6
⊢ ((𝜑 ↔ ⊤) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
12 | 4, 11 | bitri 274 |
. . . . 5
⊢ (𝜑 ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
13 | 12 | albii 1823 |
. . . 4
⊢
(∀𝑦𝜑 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
14 | | dfcleq 2731 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
15 | | dfv2 3425 |
. . . . . 6
⊢ V =
{𝑥 ∣
⊤} |
16 | 15 | eqcomi 2747 |
. . . . 5
⊢ {𝑥 ∣ ⊤} =
V |
17 | 16 | eqeq2i 2751 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ {𝑥 ∣ 𝜑} = V) |
18 | 13, 14, 17 | 3bitr2i 298 |
. . 3
⊢
(∀𝑦𝜑 ↔ {𝑥 ∣ 𝜑} = V) |
19 | | equid 2016 |
. . . . . . 7
⊢ 𝑦 = 𝑦 |
20 | 19 | nbn3 373 |
. . . . . 6
⊢ (¬
𝜑 ↔ (𝜑 ↔ ¬ 𝑦 = 𝑦)) |
21 | | df-clab 2716 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ [𝑦 / 𝑥] ¬ 𝑥 = 𝑥) |
22 | | equid 2016 |
. . . . . . . . . . . 12
⊢ 𝑥 = 𝑥 |
23 | 22, 19 | 2th 263 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥 ↔ 𝑦 = 𝑦) |
24 | 23 | notbii 319 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦) |
25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦)) |
26 | 25 | sbievw 2097 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥] ¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦) |
27 | 21, 26 | bitr2i 275 |
. . . . . . 7
⊢ (¬
𝑦 = 𝑦 ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥}) |
28 | 7, 27 | bibi12i 339 |
. . . . . 6
⊢ ((𝜑 ↔ ¬ 𝑦 = 𝑦) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
29 | 20, 28 | bitri 274 |
. . . . 5
⊢ (¬
𝜑 ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
30 | 29 | albii 1823 |
. . . 4
⊢
(∀𝑦 ¬
𝜑 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
31 | | dfcleq 2731 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
32 | | dfnul2 4256 |
. . . . . 6
⊢ ∅ =
{𝑥 ∣ ¬ 𝑥 = 𝑥} |
33 | 32 | eqcomi 2747 |
. . . . 5
⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = ∅ |
34 | 33 | eqeq2i 2751 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ {𝑥 ∣ 𝜑} = ∅) |
35 | 30, 31, 34 | 3bitr2i 298 |
. . 3
⊢
(∀𝑦 ¬
𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
36 | 18, 35 | orbi12i 911 |
. 2
⊢
((∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑) ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
37 | 3, 36 | mpbi 229 |
1
⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |