| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑦𝜑 |
| 2 | | nf3 1786 |
. . 3
⊢
(Ⅎ𝑦𝜑 ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑)) |
| 3 | 1, 2 | mpbi 230 |
. 2
⊢
(∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑) |
| 4 | | tbtru 1548 |
. . . . . 6
⊢ (𝜑 ↔ (𝜑 ↔ ⊤)) |
| 5 | | df-clab 2715 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) |
| 6 | | sbv 2088 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 7 | 5, 6 | bitr2i 276 |
. . . . . . 7
⊢ (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 8 | | tru 1544 |
. . . . . . . 8
⊢
⊤ |
| 9 | | vextru 2721 |
. . . . . . . 8
⊢ 𝑦 ∈ {𝑥 ∣ ⊤} |
| 10 | 8, 9 | 2th 264 |
. . . . . . 7
⊢ (⊤
↔ 𝑦 ∈ {𝑥 ∣
⊤}) |
| 11 | 7, 10 | bibi12i 339 |
. . . . . 6
⊢ ((𝜑 ↔ ⊤) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 12 | 4, 11 | bitri 275 |
. . . . 5
⊢ (𝜑 ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 13 | 12 | albii 1819 |
. . . 4
⊢
(∀𝑦𝜑 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 14 | | dfcleq 2730 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 15 | | dfv2 3483 |
. . . . . 6
⊢ V =
{𝑥 ∣
⊤} |
| 16 | 15 | eqcomi 2746 |
. . . . 5
⊢ {𝑥 ∣ ⊤} =
V |
| 17 | 16 | eqeq2i 2750 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ {𝑥 ∣ 𝜑} = V) |
| 18 | 13, 14, 17 | 3bitr2i 299 |
. . 3
⊢
(∀𝑦𝜑 ↔ {𝑥 ∣ 𝜑} = V) |
| 19 | | equid 2011 |
. . . . . . 7
⊢ 𝑦 = 𝑦 |
| 20 | 19 | nbn3 373 |
. . . . . 6
⊢ (¬
𝜑 ↔ (𝜑 ↔ ¬ 𝑦 = 𝑦)) |
| 21 | | df-clab 2715 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ [𝑦 / 𝑥] ¬ 𝑥 = 𝑥) |
| 22 | | equid 2011 |
. . . . . . . . . . . 12
⊢ 𝑥 = 𝑥 |
| 23 | 22, 19 | 2th 264 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥 ↔ 𝑦 = 𝑦) |
| 24 | 23 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦) |
| 25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦)) |
| 26 | 25 | sbievw 2093 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥] ¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦) |
| 27 | 21, 26 | bitr2i 276 |
. . . . . . 7
⊢ (¬
𝑦 = 𝑦 ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥}) |
| 28 | 7, 27 | bibi12i 339 |
. . . . . 6
⊢ ((𝜑 ↔ ¬ 𝑦 = 𝑦) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
| 29 | 20, 28 | bitri 275 |
. . . . 5
⊢ (¬
𝜑 ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
| 30 | 29 | albii 1819 |
. . . 4
⊢
(∀𝑦 ¬
𝜑 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
| 31 | | dfcleq 2730 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ¬ 𝑥 = 𝑥})) |
| 32 | | dfnul2 4336 |
. . . . . 6
⊢ ∅ =
{𝑥 ∣ ¬ 𝑥 = 𝑥} |
| 33 | 32 | eqcomi 2746 |
. . . . 5
⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = ∅ |
| 34 | 33 | eqeq2i 2750 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ¬ 𝑥 = 𝑥} ↔ {𝑥 ∣ 𝜑} = ∅) |
| 35 | 30, 31, 34 | 3bitr2i 299 |
. . 3
⊢
(∀𝑦 ¬
𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
| 36 | 18, 35 | orbi12i 915 |
. 2
⊢
((∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑) ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| 37 | 3, 36 | mpbi 230 |
1
⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |