MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0orv Structured version   Visualization version   GIF version

Theorem ab0orv 4330
Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) Reduce axiom usage. (Revised by GG, 30-Aug-2024.)
Assertion
Ref Expression
ab0orv ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ab0orv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑦𝜑
2 nf3 1787 . . 3 (Ⅎ𝑦𝜑 ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑))
31, 2mpbi 230 . 2 (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑)
4 biidd 262 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜑))
54eqabcbw 2805 . . . 4 ({𝑥𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝜑𝑦 ∈ {𝑥 ∣ ⊤}))
6 dfv2 3439 . . . . 5 V = {𝑥 ∣ ⊤}
76eqeq2i 2744 . . . 4 ({𝑥𝜑} = V ↔ {𝑥𝜑} = {𝑥 ∣ ⊤})
8 vextru 2716 . . . . . 6 𝑦 ∈ {𝑥 ∣ ⊤}
98tbt 369 . . . . 5 (𝜑 ↔ (𝜑𝑦 ∈ {𝑥 ∣ ⊤}))
109albii 1820 . . . 4 (∀𝑦𝜑 ↔ ∀𝑦(𝜑𝑦 ∈ {𝑥 ∣ ⊤}))
115, 7, 103bitr4i 303 . . 3 ({𝑥𝜑} = V ↔ ∀𝑦𝜑)
124ab0w 4326 . . 3 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜑)
1311, 12orbi12i 914 . 2 (({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅) ↔ (∀𝑦𝜑 ∨ ∀𝑦 ¬ 𝜑))
143, 13mpbir 231 1 ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847  wal 1539   = wceq 1541  wtru 1542  wnf 1784  wcel 2111  {cab 2709  Vcvv 3436  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-v 3438  df-dif 3900  df-nul 4281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator