Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgn3da Structured version   Visualization version   GIF version

Theorem sgn3da 31799
Description: A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Hypotheses
Ref Expression
sgn3da.0 (𝜑𝐴 ∈ ℝ*)
sgn3da.1 ((sgn‘𝐴) = 0 → (𝜓𝜒))
sgn3da.2 ((sgn‘𝐴) = 1 → (𝜓𝜃))
sgn3da.3 ((sgn‘𝐴) = -1 → (𝜓𝜏))
sgn3da.4 ((𝜑𝐴 = 0) → 𝜒)
sgn3da.5 ((𝜑 ∧ 0 < 𝐴) → 𝜃)
sgn3da.6 ((𝜑𝐴 < 0) → 𝜏)
Assertion
Ref Expression
sgn3da (𝜑𝜓)

Proof of Theorem sgn3da
StepHypRef Expression
1 sgn3da.0 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
2 sgnval 14446 . . . . . . . . 9 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
31, 2syl 17 . . . . . . . 8 (𝜑 → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
43eqeq2d 2832 . . . . . . 7 (𝜑 → (0 = (sgn‘𝐴) ↔ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
54pm5.32i 577 . . . . . 6 ((𝜑 ∧ 0 = (sgn‘𝐴)) ↔ (𝜑 ∧ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
6 sgn3da.1 . . . . . . . . 9 ((sgn‘𝐴) = 0 → (𝜓𝜒))
76eqcoms 2829 . . . . . . . 8 (0 = (sgn‘𝐴) → (𝜓𝜒))
87bicomd 225 . . . . . . 7 (0 = (sgn‘𝐴) → (𝜒𝜓))
98adantl 484 . . . . . 6 ((𝜑 ∧ 0 = (sgn‘𝐴)) → (𝜒𝜓))
105, 9sylbir 237 . . . . 5 ((𝜑 ∧ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) → (𝜒𝜓))
1110expcom 416 . . . 4 (0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → (𝜑 → (𝜒𝜓)))
1211pm5.74d 275 . . 3 (0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → ((𝜑𝜒) ↔ (𝜑𝜓)))
133eqeq2d 2832 . . . . . . 7 (𝜑 → (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
1413pm5.32i 577 . . . . . 6 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)) ↔ (𝜑 ∧ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
15 eqeq1 2825 . . . . . . . . 9 (-1 = if(𝐴 < 0, -1, 1) → (-1 = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)))
1615imbi1d 344 . . . . . . . 8 (-1 = if(𝐴 < 0, -1, 1) → ((-1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)) ↔ (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))))
17 eqeq1 2825 . . . . . . . . 9 (1 = if(𝐴 < 0, -1, 1) → (1 = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)))
1817imbi1d 344 . . . . . . . 8 (1 = if(𝐴 < 0, -1, 1) → ((1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)) ↔ (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))))
19 sgn3da.6 . . . . . . . . . . . . . . 15 ((𝜑𝐴 < 0) → 𝜏)
2019adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝐴 < 0) ∧ (𝐴 < 0 → 𝜏)) → 𝜏)
21 simp2 1133 . . . . . . . . . . . . . . 15 (((𝜑𝐴 < 0) ∧ 𝜏𝐴 < 0) → 𝜏)
22213expia 1117 . . . . . . . . . . . . . 14 (((𝜑𝐴 < 0) ∧ 𝜏) → (𝐴 < 0 → 𝜏))
2320, 22impbida 799 . . . . . . . . . . . . 13 ((𝜑𝐴 < 0) → ((𝐴 < 0 → 𝜏) ↔ 𝜏))
24 pm3.24 405 . . . . . . . . . . . . . . . . 17 ¬ (𝐴 < 0 ∧ ¬ 𝐴 < 0)
2524pm2.21i 119 . . . . . . . . . . . . . . . 16 ((𝐴 < 0 ∧ ¬ 𝐴 < 0) → 𝜃)
2625adantl 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 < 0 ∧ ¬ 𝐴 < 0)) → 𝜃)
2726expr 459 . . . . . . . . . . . . . 14 ((𝜑𝐴 < 0) → (¬ 𝐴 < 0 → 𝜃))
28 tbtru 1541 . . . . . . . . . . . . . 14 ((¬ 𝐴 < 0 → 𝜃) ↔ ((¬ 𝐴 < 0 → 𝜃) ↔ ⊤))
2927, 28sylib 220 . . . . . . . . . . . . 13 ((𝜑𝐴 < 0) → ((¬ 𝐴 < 0 → 𝜃) ↔ ⊤))
3023, 29anbi12d 632 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ (𝜏 ∧ ⊤)))
31 ancom 463 . . . . . . . . . . . . 13 ((𝜏 ∧ ⊤) ↔ (⊤ ∧ 𝜏))
32 truan 1544 . . . . . . . . . . . . 13 ((⊤ ∧ 𝜏) ↔ 𝜏)
3331, 32bitri 277 . . . . . . . . . . . 12 ((𝜏 ∧ ⊤) ↔ 𝜏)
3430, 33syl6bb 289 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜏))
35343adant3 1128 . . . . . . . . . 10 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜏))
36 sgn3da.3 . . . . . . . . . . . 12 ((sgn‘𝐴) = -1 → (𝜓𝜏))
3736eqcoms 2829 . . . . . . . . . . 11 (-1 = (sgn‘𝐴) → (𝜓𝜏))
38373ad2ant3 1131 . . . . . . . . . 10 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (𝜓𝜏))
3935, 38bitr4d 284 . . . . . . . . 9 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
40393expia 1117 . . . . . . . 8 ((𝜑𝐴 < 0) → (-1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
41193adant2 1127 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 𝐴 < 0) → 𝜏)
42413expia 1117 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴 < 0) → (𝐴 < 0 → 𝜏))
43 tbtru 1541 . . . . . . . . . . . . . 14 ((𝐴 < 0 → 𝜏) ↔ ((𝐴 < 0 → 𝜏) ↔ ⊤))
4442, 43sylib 220 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 < 0) → ((𝐴 < 0 → 𝜏) ↔ ⊤))
45 pm3.35 801 . . . . . . . . . . . . . . 15 ((¬ 𝐴 < 0 ∧ (¬ 𝐴 < 0 → 𝜃)) → 𝜃)
4645adantll 712 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ (¬ 𝐴 < 0 → 𝜃)) → 𝜃)
47 simp2 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ 𝜃 ∧ ¬ 𝐴 < 0) → 𝜃)
48473expia 1117 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ 𝜃) → (¬ 𝐴 < 0 → 𝜃))
4946, 48impbida 799 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 < 0) → ((¬ 𝐴 < 0 → 𝜃) ↔ 𝜃))
5044, 49anbi12d 632 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ (⊤ ∧ 𝜃)))
51 truan 1544 . . . . . . . . . . . 12 ((⊤ ∧ 𝜃) ↔ 𝜃)
5250, 51syl6bb 289 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜃))
53523adant3 1128 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜃))
54 sgn3da.2 . . . . . . . . . . . 12 ((sgn‘𝐴) = 1 → (𝜓𝜃))
5554eqcoms 2829 . . . . . . . . . . 11 (1 = (sgn‘𝐴) → (𝜓𝜃))
56553ad2ant3 1131 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (𝜓𝜃))
5753, 56bitr4d 284 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
58573expia 1117 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → (1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
5916, 18, 40, 58ifbothda 4503 . . . . . . 7 (𝜑 → (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
6059imp 409 . . . . . 6 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
6114, 60sylbir 237 . . . . 5 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
6261expcom 416 . . . 4 (if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → (𝜑 → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
6362pm5.74d 275 . . 3 (if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → ((𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))) ↔ (𝜑𝜓)))
64 sgn3da.4 . . . . 5 ((𝜑𝐴 = 0) → 𝜒)
6564expcom 416 . . . 4 (𝐴 = 0 → (𝜑𝜒))
6665adantl 484 . . 3 ((⊤ ∧ 𝐴 = 0) → (𝜑𝜒))
6719ex 415 . . . . . . 7 (𝜑 → (𝐴 < 0 → 𝜏))
6867adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 0) → (𝐴 < 0 → 𝜏))
69 simp1 1132 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 𝜑)
70 df-ne 3017 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
71 0xr 10687 . . . . . . . . . . . . 13 0 ∈ ℝ*
72 xrlttri2 12534 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
731, 71, 72sylancl 588 . . . . . . . . . . . 12 (𝜑 → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
7470, 73syl5bbr 287 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
7574biimpa 479 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 = 0) → (𝐴 < 0 ∨ 0 < 𝐴))
7675ord 860 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 = 0) → (¬ 𝐴 < 0 → 0 < 𝐴))
77763impia 1113 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
78 sgn3da.5 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝜃)
7969, 77, 78syl2anc 586 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 𝜃)
80793expia 1117 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 0) → (¬ 𝐴 < 0 → 𝜃))
8168, 80jca 514 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 0) → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)))
8281expcom 416 . . . 4 𝐴 = 0 → (𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))))
8382adantl 484 . . 3 ((⊤ ∧ ¬ 𝐴 = 0) → (𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))))
8412, 63, 66, 83ifbothda 4503 . 2 (⊤ → (𝜑𝜓))
8584mptru 1540 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wne 3016  ifcif 4466   class class class wbr 5065  cfv 6354  0cc0 10536  1c1 10537  *cxr 10673   < clt 10674  -cneg 10870  sgncsgn 14444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-i2m1 10604  ax-rnegex 10607  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-neg 10872  df-sgn 14445
This theorem is referenced by:  sgnmul  31800  sgnsub  31802  sgnnbi  31803  sgnpbi  31804  sgn0bi  31805  sgnsgn  31806
  Copyright terms: Public domain W3C validator