MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vexwt Structured version   Visualization version   GIF version

Theorem vexwt 2716
Description: A standard theorem of predicate calculus (stdpc4 2073) expressed using class abstractions. Closed form of vexw 2717. (Contributed by BJ, 14-Jun-2019.)
Assertion
Ref Expression
vexwt (∀𝑥𝜑𝑦 ∈ {𝑥𝜑})

Proof of Theorem vexwt
StepHypRef Expression
1 stdpc4 2073 . 2 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 df-clab 2712 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
31, 2sylibr 234 1 (∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  [wsb 2067  wcel 2113  {cab 2711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712
This theorem is referenced by:  bj-issetwt  36940  bj-abvALT  36972
  Copyright terms: Public domain W3C validator