| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2708 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 |
| This theorem is referenced by: eqabbOLD 2868 eqabrd 2870 eqabf 2921 abid2fOLD 2923 elabgf 3641 ralab2 3668 rexab2 3670 ss2ab 4025 ab0ALT 4344 sbccsb 4399 sbccsb2 4400 eluniab 4885 elintabOLD 4923 iunab 5015 iinab 5032 zfrep4 5248 rnep 5890 sniota 6502 opabiota 6943 eusvobj2 7379 eloprabga 7498 finds2 7874 frrlem10 8274 en3lplem2 9566 scottexs 9840 scott0s 9841 cp 9844 cardprclem 9932 cfflb 10212 fin23lem29 10294 axdc3lem2 10404 4sqlem12 16927 xkococn 23547 ptcmplem4 23942 noinfbnd1lem1 27635 ofpreima 32589 algextdeglem6 33712 qqhval2 33972 esum2dlem 34082 sigaclcu2 34110 bnj1143 34780 bnj1366 34819 bnj906 34920 bnj1256 35005 bnj1259 35006 bnj1311 35014 mclsax 35556 ellines 36140 bj-csbsnlem 36891 bj-reabeq 37015 bj-velpwALT 37041 topdifinffinlem 37335 rdgssun 37366 finxpreclem6 37384 finxpnom 37389 ralssiun 37395 setindtrs 43014 rababg 43563 scottabf 44229 compab 44431 tpid3gVD 44831 en3lplem2VD 44833 permaxrep 44996 iunmapsn 45211 ssfiunibd 45307 absnsb 47028 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |