Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2716 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2251 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 |
This theorem is referenced by: abeq2 2871 abeq2d 2873 abbiOLD 2879 abid2f 2938 abeq2f 2939 elabgtOLD 3597 elabgf 3598 elabgOLD 3601 ralab2 3627 ralab2OLD 3628 rexab2 3630 rexab2OLD 3631 ss2ab 3989 ab0ALT 4307 abn0OLD 4312 sbccsb 4364 sbccsb2 4365 eluniab 4851 elintab 4887 iunab 4977 iinab 4993 zfrep4 5215 rnep 5825 sniota 6409 opabiota 6833 eusvobj2 7248 eloprabga 7360 eloprabgaOLD 7361 finds2 7721 frrlem10 8082 wfrlem12OLD 8122 en3lplem2 9301 scottexs 9576 scott0s 9577 cp 9580 cardprclem 9668 cfflb 9946 fin23lem29 10028 axdc3lem2 10138 4sqlem12 16585 xkococn 22719 ptcmplem4 23114 ofpreima 30904 qqhval2 31832 esum2dlem 31960 sigaclcu2 31988 bnj1143 32670 bnj1366 32709 bnj906 32810 bnj1256 32895 bnj1259 32896 bnj1311 32904 mclsax 33431 noinfbnd1lem1 33853 ellines 34381 bj-csbsnlem 35015 bj-reabeq 35144 topdifinffinlem 35445 rdgssun 35476 finxpreclem6 35494 finxpnom 35499 ralssiun 35505 setindtrs 40763 rababg 41070 scottabf 41747 compab 41949 tpid3gVD 42351 en3lplem2VD 42353 iunmapsn 42646 ssfiunibd 42738 absnsb 44408 setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |