Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2716 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2248 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 |
This theorem is referenced by: abeq2 2872 abeq2d 2874 abbiOLD 2880 abid2f 2939 abeq2f 2940 elabgtOLD 3604 elabgf 3605 elabgOLD 3608 ralab2 3634 rexab2 3636 ss2ab 3993 ab0ALT 4310 abn0OLD 4315 sbccsb 4367 sbccsb2 4368 eluniab 4854 elintab 4890 iunab 4981 iinab 4997 zfrep4 5220 rnep 5836 sniota 6424 opabiota 6851 eusvobj2 7268 eloprabga 7382 eloprabgaOLD 7383 finds2 7747 frrlem10 8111 wfrlem12OLD 8151 en3lplem2 9371 scottexs 9645 scott0s 9646 cp 9649 cardprclem 9737 cfflb 10015 fin23lem29 10097 axdc3lem2 10207 4sqlem12 16657 xkococn 22811 ptcmplem4 23206 ofpreima 31002 qqhval2 31932 esum2dlem 32060 sigaclcu2 32088 bnj1143 32770 bnj1366 32809 bnj906 32910 bnj1256 32995 bnj1259 32996 bnj1311 33004 mclsax 33531 noinfbnd1lem1 33926 ellines 34454 bj-csbsnlem 35088 bj-reabeq 35217 topdifinffinlem 35518 rdgssun 35549 finxpreclem6 35567 finxpnom 35572 ralssiun 35578 setindtrs 40847 rababg 41181 scottabf 41858 compab 42060 tpid3gVD 42462 en3lplem2VD 42464 iunmapsn 42757 ssfiunibd 42848 absnsb 44521 setrec2lem2 46400 |
Copyright terms: Public domain | W3C validator |