| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2712 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2260 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 |
| This theorem is referenced by: eqabrd 2874 eqabf 2925 abid2fOLD 2927 elabgf 3626 ralab2 3652 rexab2 3654 ss2ab 4010 ab0ALT 4330 sbccsb 4385 sbccsb2 4386 eluniab 4872 iunab 5002 iinab 5018 zfrep4 5233 rnep 5871 sniota 6477 opabiota 6910 eusvobj2 7344 eloprabga 7461 finds2 7834 frrlem10 8231 en3lplem2 9510 scottexs 9787 scott0s 9788 cp 9791 cardprclem 9879 cfflb 10157 fin23lem29 10239 axdc3lem2 10349 4sqlem12 16870 xkococn 23576 ptcmplem4 23971 noinfbnd1lem1 27663 ofpreima 32649 algextdeglem6 33756 qqhval2 34016 esum2dlem 34126 sigaclcu2 34154 bnj1143 34823 bnj1366 34862 bnj906 34963 bnj1256 35048 bnj1259 35049 bnj1311 35057 mclsax 35634 ellines 36217 bj-csbsnlem 36968 bj-reabeq 37092 bj-velpwALT 37118 topdifinffinlem 37412 rdgssun 37443 finxpreclem6 37461 finxpnom 37466 ralssiun 37472 setindtrs 43143 rababg 43692 scottabf 44358 compab 44559 tpid3gVD 44959 en3lplem2VD 44961 permaxrep 45124 iunmapsn 45339 ssfiunibd 45435 absnsb 47152 setrec2lem2 49820 |
| Copyright terms: Public domain | W3C validator |