![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2776 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2220 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 276 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 [wsb 2042 ∈ wcel 2081 {cab 2775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-sb 2043 df-clab 2776 |
This theorem is referenced by: abeq2 2914 abeq2d 2916 abbi 2924 abid2f 2980 abeq2f 2981 abeq2fOLD 2982 elabgt 3601 elabgf 3602 elabg 3604 ralab2 3626 rexab2 3628 ss2ab 3960 ab0 4253 abn0 4256 sbccsb 4300 sbccsb2 4301 eluniab 4756 elintab 4793 iunab 4874 iinab 4889 zfrep4 5091 sniota 6216 opabiota 6613 eusvobj2 7009 eloprabga 7117 finds2 7466 wfrlem12 7818 en3lplem2 8922 scottexs 9162 scott0s 9163 cp 9166 cardprclem 9254 cfflb 9527 fin23lem29 9609 axdc3lem2 9719 4sqlem12 16121 xkococn 21952 ptcmplem4 22347 ofpreima 30100 qqhval2 30840 esum2dlem 30968 sigaclcu2 30996 bnj1143 31679 bnj1366 31718 bnj906 31818 bnj1256 31901 bnj1259 31902 bnj1311 31910 mclsax 32424 frrlem10 32741 ellines 33222 bj-abeq2 33690 bj-csbsnlem 33791 topdifinffinlem 34159 rdgssun 34190 finxpreclem6 34208 finxpnom 34213 ralssiun 34219 setindtrs 39107 rababg 39418 scottabf 40073 compab 40313 tpid3gVD 40715 en3lplem2VD 40717 iunmapsn 41020 ssfiunibd 41117 absnsb 42778 setrec2lem2 44277 |
Copyright terms: Public domain | W3C validator |