![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2711 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2248 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 |
This theorem is referenced by: eqabbOLD 2875 eqabrd 2877 eqabf 2936 abid2fOLD 2938 elabgtOLD 3664 elabgf 3665 elabgOLD 3668 ralab2 3694 rexab2 3696 ss2ab 4057 ab0ALT 4377 abn0OLD 4382 sbccsb 4434 sbccsb2 4435 eluniab 4924 elintabOLD 4964 iunab 5055 iinab 5072 zfrep4 5297 rnep 5927 sniota 6535 opabiota 6975 eusvobj2 7401 eloprabga 7516 eloprabgaOLD 7517 finds2 7891 frrlem10 8280 wfrlem12OLD 8320 en3lplem2 9608 scottexs 9882 scott0s 9883 cp 9886 cardprclem 9974 cfflb 10254 fin23lem29 10336 axdc3lem2 10446 4sqlem12 16889 xkococn 23164 ptcmplem4 23559 noinfbnd1lem1 27226 ofpreima 31890 qqhval2 32962 esum2dlem 33090 sigaclcu2 33118 bnj1143 33801 bnj1366 33840 bnj906 33941 bnj1256 34026 bnj1259 34027 bnj1311 34035 mclsax 34560 ellines 35124 bj-csbsnlem 35783 bj-reabeq 35908 bj-velpwALT 35934 topdifinffinlem 36228 rdgssun 36259 finxpreclem6 36277 finxpnom 36282 ralssiun 36288 setindtrs 41764 rababg 42325 scottabf 42999 compab 43201 tpid3gVD 43603 en3lplem2VD 43605 iunmapsn 43916 ssfiunibd 44019 absnsb 45737 setrec2lem2 47739 |
Copyright terms: Public domain | W3C validator |