![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2713 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2253 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2062 ∈ wcel 2106 {cab 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 |
This theorem is referenced by: eqabbOLD 2880 eqabrd 2882 eqabf 2933 abid2fOLD 2935 elabgtOLDOLD 3674 elabgf 3675 elabgOLD 3678 ralab2 3706 rexab2 3708 ss2ab 4072 ab0ALT 4387 sbccsb 4442 sbccsb2 4443 eluniab 4926 elintabOLD 4964 iunab 5056 iinab 5073 zfrep4 5299 rnep 5940 sniota 6554 opabiota 6991 eusvobj2 7423 eloprabga 7541 eloprabgaOLD 7542 finds2 7921 frrlem10 8319 wfrlem12OLD 8359 en3lplem2 9651 scottexs 9925 scott0s 9926 cp 9929 cardprclem 10017 cfflb 10297 fin23lem29 10379 axdc3lem2 10489 4sqlem12 16990 xkococn 23684 ptcmplem4 24079 noinfbnd1lem1 27783 ofpreima 32682 algextdeglem6 33728 qqhval2 33945 esum2dlem 34073 sigaclcu2 34101 bnj1143 34783 bnj1366 34822 bnj906 34923 bnj1256 35008 bnj1259 35009 bnj1311 35017 mclsax 35554 ellines 36134 bj-csbsnlem 36886 bj-reabeq 37010 bj-velpwALT 37036 topdifinffinlem 37330 rdgssun 37361 finxpreclem6 37379 finxpnom 37384 ralssiun 37390 setindtrs 43014 rababg 43564 scottabf 44236 compab 44438 tpid3gVD 44840 en3lplem2VD 44842 iunmapsn 45160 ssfiunibd 45260 absnsb 46977 setrec2lem2 48925 |
Copyright terms: Public domain | W3C validator |