| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2715 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2255 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2064 ∈ wcel 2108 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 |
| This theorem is referenced by: eqabbOLD 2882 eqabrd 2884 eqabf 2935 abid2fOLD 2937 elabgf 3674 ralab2 3703 rexab2 3705 ss2ab 4062 ab0ALT 4381 sbccsb 4436 sbccsb2 4437 eluniab 4921 elintabOLD 4959 iunab 5051 iinab 5068 zfrep4 5293 rnep 5937 sniota 6552 opabiota 6991 eusvobj2 7423 eloprabga 7542 finds2 7920 frrlem10 8320 wfrlem12OLD 8360 en3lplem2 9653 scottexs 9927 scott0s 9928 cp 9931 cardprclem 10019 cfflb 10299 fin23lem29 10381 axdc3lem2 10491 4sqlem12 16994 xkococn 23668 ptcmplem4 24063 noinfbnd1lem1 27768 ofpreima 32675 algextdeglem6 33763 qqhval2 33983 esum2dlem 34093 sigaclcu2 34121 bnj1143 34804 bnj1366 34843 bnj906 34944 bnj1256 35029 bnj1259 35030 bnj1311 35038 mclsax 35574 ellines 36153 bj-csbsnlem 36904 bj-reabeq 37028 bj-velpwALT 37054 topdifinffinlem 37348 rdgssun 37379 finxpreclem6 37397 finxpnom 37402 ralssiun 37408 setindtrs 43037 rababg 43587 scottabf 44259 compab 44461 tpid3gVD 44862 en3lplem2VD 44864 iunmapsn 45222 ssfiunibd 45321 absnsb 47039 setrec2lem2 49213 |
| Copyright terms: Public domain | W3C validator |