![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2718 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 |
This theorem is referenced by: eqabbOLD 2885 eqabrd 2887 eqabf 2941 abid2fOLD 2943 elabgtOLDOLD 3687 elabgf 3688 elabgOLD 3691 ralab2 3719 rexab2 3721 ss2ab 4085 ab0ALT 4404 sbccsb 4459 sbccsb2 4460 eluniab 4945 elintabOLD 4983 iunab 5074 iinab 5091 zfrep4 5314 rnep 5951 sniota 6564 opabiota 7004 eusvobj2 7440 eloprabga 7558 eloprabgaOLD 7559 finds2 7938 frrlem10 8336 wfrlem12OLD 8376 en3lplem2 9682 scottexs 9956 scott0s 9957 cp 9960 cardprclem 10048 cfflb 10328 fin23lem29 10410 axdc3lem2 10520 4sqlem12 17003 xkococn 23689 ptcmplem4 24084 noinfbnd1lem1 27786 ofpreima 32683 algextdeglem6 33713 qqhval2 33928 esum2dlem 34056 sigaclcu2 34084 bnj1143 34766 bnj1366 34805 bnj906 34906 bnj1256 34991 bnj1259 34992 bnj1311 35000 mclsax 35537 ellines 36116 bj-csbsnlem 36869 bj-reabeq 36993 bj-velpwALT 37019 topdifinffinlem 37313 rdgssun 37344 finxpreclem6 37362 finxpnom 37367 ralssiun 37373 setindtrs 42982 rababg 43536 scottabf 44209 compab 44411 tpid3gVD 44813 en3lplem2VD 44815 iunmapsn 45124 ssfiunibd 45224 absnsb 46942 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |