| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2708 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 |
| This theorem is referenced by: eqabbOLD 2868 eqabrd 2870 eqabf 2921 abid2fOLD 2923 elabgf 3632 ralab2 3659 rexab2 3661 ss2ab 4016 ab0ALT 4334 sbccsb 4389 sbccsb2 4390 eluniab 4875 elintabOLD 4912 iunab 5003 iinab 5020 zfrep4 5235 rnep 5873 sniota 6477 opabiota 6909 eusvobj2 7345 eloprabga 7462 finds2 7838 frrlem10 8235 en3lplem2 9528 scottexs 9802 scott0s 9803 cp 9806 cardprclem 9894 cfflb 10172 fin23lem29 10254 axdc3lem2 10364 4sqlem12 16886 xkococn 23563 ptcmplem4 23958 noinfbnd1lem1 27651 ofpreima 32622 algextdeglem6 33691 qqhval2 33951 esum2dlem 34061 sigaclcu2 34089 bnj1143 34759 bnj1366 34798 bnj906 34899 bnj1256 34984 bnj1259 34985 bnj1311 34993 mclsax 35544 ellines 36128 bj-csbsnlem 36879 bj-reabeq 37003 bj-velpwALT 37029 topdifinffinlem 37323 rdgssun 37354 finxpreclem6 37372 finxpnom 37377 ralssiun 37383 setindtrs 43001 rababg 43550 scottabf 44216 compab 44418 tpid3gVD 44818 en3lplem2VD 44820 permaxrep 44983 iunmapsn 45198 ssfiunibd 45294 absnsb 47015 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |