| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2714 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2255 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2064 ∈ wcel 2108 {cab 2713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 |
| This theorem is referenced by: eqabbOLD 2875 eqabrd 2877 eqabf 2928 abid2fOLD 2930 elabgf 3653 ralab2 3680 rexab2 3682 ss2ab 4037 ab0ALT 4356 sbccsb 4411 sbccsb2 4412 eluniab 4897 elintabOLD 4935 iunab 5027 iinab 5044 zfrep4 5263 rnep 5906 sniota 6522 opabiota 6961 eusvobj2 7397 eloprabga 7516 finds2 7894 frrlem10 8294 wfrlem12OLD 8334 en3lplem2 9627 scottexs 9901 scott0s 9902 cp 9905 cardprclem 9993 cfflb 10273 fin23lem29 10355 axdc3lem2 10465 4sqlem12 16976 xkococn 23598 ptcmplem4 23993 noinfbnd1lem1 27687 ofpreima 32643 algextdeglem6 33756 qqhval2 34013 esum2dlem 34123 sigaclcu2 34151 bnj1143 34821 bnj1366 34860 bnj906 34961 bnj1256 35046 bnj1259 35047 bnj1311 35055 mclsax 35591 ellines 36170 bj-csbsnlem 36921 bj-reabeq 37045 bj-velpwALT 37071 topdifinffinlem 37365 rdgssun 37396 finxpreclem6 37414 finxpnom 37419 ralssiun 37425 setindtrs 43049 rababg 43598 scottabf 44264 compab 44466 tpid3gVD 44866 en3lplem2VD 44868 permaxrep 45031 iunmapsn 45241 ssfiunibd 45338 absnsb 47056 setrec2lem2 49558 |
| Copyright terms: Public domain | W3C validator |