| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2709 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 |
| This theorem is referenced by: eqabbOLD 2869 eqabrd 2871 eqabf 2922 abid2fOLD 2924 elabgf 3644 ralab2 3671 rexab2 3673 ss2ab 4028 ab0ALT 4347 sbccsb 4402 sbccsb2 4403 eluniab 4888 elintabOLD 4926 iunab 5018 iinab 5035 zfrep4 5251 rnep 5893 sniota 6505 opabiota 6946 eusvobj2 7382 eloprabga 7501 finds2 7877 frrlem10 8277 en3lplem2 9573 scottexs 9847 scott0s 9848 cp 9851 cardprclem 9939 cfflb 10219 fin23lem29 10301 axdc3lem2 10411 4sqlem12 16934 xkococn 23554 ptcmplem4 23949 noinfbnd1lem1 27642 ofpreima 32596 algextdeglem6 33719 qqhval2 33979 esum2dlem 34089 sigaclcu2 34117 bnj1143 34787 bnj1366 34826 bnj906 34927 bnj1256 35012 bnj1259 35013 bnj1311 35021 mclsax 35563 ellines 36147 bj-csbsnlem 36898 bj-reabeq 37022 bj-velpwALT 37048 topdifinffinlem 37342 rdgssun 37373 finxpreclem6 37391 finxpnom 37396 ralssiun 37402 setindtrs 43021 rababg 43570 scottabf 44236 compab 44438 tpid3gVD 44838 en3lplem2VD 44840 permaxrep 45003 iunmapsn 45218 ssfiunibd 45314 absnsb 47032 setrec2lem2 49687 |
| Copyright terms: Public domain | W3C validator |