| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version GIF version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| abid | ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2710 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2258 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 |
| This theorem is referenced by: eqabbOLD 2871 eqabrd 2873 eqabf 2924 abid2fOLD 2926 elabgf 3630 ralab2 3656 rexab2 3658 ss2ab 4013 ab0ALT 4331 sbccsb 4386 sbccsb2 4387 eluniab 4873 iunab 5000 iinab 5016 zfrep4 5231 rnep 5867 sniota 6472 opabiota 6904 eusvobj2 7338 eloprabga 7455 finds2 7828 frrlem10 8225 en3lplem2 9503 scottexs 9780 scott0s 9781 cp 9784 cardprclem 9872 cfflb 10150 fin23lem29 10232 axdc3lem2 10342 4sqlem12 16868 xkococn 23576 ptcmplem4 23971 noinfbnd1lem1 27663 ofpreima 32645 algextdeglem6 33733 qqhval2 33993 esum2dlem 34103 sigaclcu2 34131 bnj1143 34800 bnj1366 34839 bnj906 34940 bnj1256 35025 bnj1259 35026 bnj1311 35034 mclsax 35611 ellines 36192 bj-csbsnlem 36943 bj-reabeq 37067 bj-velpwALT 37093 topdifinffinlem 37387 rdgssun 37418 finxpreclem6 37436 finxpnom 37441 ralssiun 37447 setindtrs 43064 rababg 43613 scottabf 44279 compab 44480 tpid3gVD 44880 en3lplem2VD 44882 permaxrep 45045 iunmapsn 45260 ssfiunibd 45356 absnsb 47064 setrec2lem2 49732 |
| Copyright terms: Public domain | W3C validator |