![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abvALT | Structured version Visualization version GIF version |
Description: Alternate version of bj-abv 36864; shorter but uses ax-8 2110. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-abvALT | ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | vexwt 2722 | . . 3 ⊢ (∀𝑥𝜑 → 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | alrimih 1822 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) |
4 | eqv 3498 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |