Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abvALT Structured version   Visualization version   GIF version

Theorem bj-abvALT 35019
Description: Alternate version of bj-abv 35018; shorter but uses ax-8 2110. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-abvALT (∀𝑥𝜑 → {𝑥𝜑} = V)

Proof of Theorem bj-abvALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1914 . . 3 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 vexwt 2720 . . 3 (∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
31, 2alrimih 1827 . 2 (∀𝑥𝜑 → ∀𝑦 𝑦 ∈ {𝑥𝜑})
4 eqv 3431 . 2 ({𝑥𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥𝜑})
53, 4sylibr 233 1 (∀𝑥𝜑 → {𝑥𝜑} = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator