![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl4ga | Structured version Visualization version GIF version |
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
Ref | Expression |
---|---|
vtocl4ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl4ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl4ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) |
vtocl4ga.4 | ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) |
vtocl4ga.5 | ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) |
Ref | Expression |
---|---|
vtocl4ga | ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl4ga.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) | |
2 | 1 | imbi2d 339 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌))) |
3 | vtocl4ga.4 | . . . 4 ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) | |
4 | 3 | imbi2d 339 | . . 3 ⊢ (𝑤 = 𝐷 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
5 | vtocl4ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | imbi2d 339 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜑) ↔ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜓))) |
7 | vtocl4ga.2 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | 7 | imbi2d 339 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜓) ↔ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜒))) |
9 | vtocl4ga.5 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) | |
10 | 9 | ex 411 | . . . . 5 ⊢ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) → ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜑)) |
11 | 6, 8, 10 | vtocl2ga 3557 | . . . 4 ⊢ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → 𝜒)) |
12 | 11 | com12 32 | . . 3 ⊢ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) → ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒)) |
13 | 2, 4, 12 | vtocl2ga 3557 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
14 | 13 | impcom 406 | 1 ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 |
This theorem is referenced by: wrd2ind 14709 |
Copyright terms: Public domain | W3C validator |