Proof of Theorem vtocl4ga
Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑄 ↔ 𝐴 ∈ 𝑄)) |
2 | 1 | anbi1d 630 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ↔ (𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅))) |
3 | 2 | anbi1d 630 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) ↔ ((𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)))) |
4 | | vtocl4ga.1 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
5 | 3, 4 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝐴 → ((((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) ↔ (((𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜓))) |
6 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅)) |
7 | 6 | anbi2d 629 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ↔ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅))) |
8 | 7 | anbi1d 630 |
. . . 4
⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)))) |
9 | | vtocl4ga.2 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
10 | 8, 9 | imbi12d 345 |
. . 3
⊢ (𝑦 = 𝐵 → ((((𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜓) ↔ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜒))) |
11 | | eleq1 2826 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆)) |
12 | 11 | anbi1d 630 |
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) ↔ (𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇))) |
13 | 12 | anbi2d 629 |
. . . 4
⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)))) |
14 | | vtocl4ga.3 |
. . . 4
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) |
15 | 13, 14 | imbi12d 345 |
. . 3
⊢ (𝑧 = 𝐶 → ((((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜒) ↔ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜌))) |
16 | | eleq1 2826 |
. . . . . 6
⊢ (𝑤 = 𝐷 → (𝑤 ∈ 𝑇 ↔ 𝐷 ∈ 𝑇)) |
17 | 16 | anbi2d 629 |
. . . . 5
⊢ (𝑤 = 𝐷 → ((𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇) ↔ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇))) |
18 | 17 | anbi2d 629 |
. . . 4
⊢ (𝑤 = 𝐷 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)))) |
19 | | vtocl4ga.4 |
. . . 4
⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) |
20 | 18, 19 | imbi12d 345 |
. . 3
⊢ (𝑤 = 𝐷 → ((((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜌) ↔ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃))) |
21 | | vtocl4ga.5 |
. . 3
⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) |
22 | 5, 10, 15, 20, 21 | vtocl4g 3519 |
. 2
⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃)) |
23 | 22 | pm2.43i 52 |
1
⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |