MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl4ga Structured version   Visualization version   GIF version

Theorem vtocl4ga 3566
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.)
Hypotheses
Ref Expression
vtocl4ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl4ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl4ga.3 (𝑧 = 𝐶 → (𝜒𝜌))
vtocl4ga.4 (𝑤 = 𝐷 → (𝜌𝜃))
vtocl4ga.5 (((𝑥𝑄𝑦𝑅) ∧ (𝑧𝑆𝑤𝑇)) → 𝜑)
Assertion
Ref Expression
vtocl4ga (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑤,𝐶,𝑧   𝑤,𝐷   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦,𝑧   𝜓,𝑥   𝜌,𝑧   𝜃,𝑤   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑧)   𝜌(𝑥,𝑦,𝑤)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem vtocl4ga
StepHypRef Expression
1 vtocl4ga.3 . . . 4 (𝑧 = 𝐶 → (𝜒𝜌))
21imbi2d 339 . . 3 (𝑧 = 𝐶 → (((𝐴𝑄𝐵𝑅) → 𝜒) ↔ ((𝐴𝑄𝐵𝑅) → 𝜌)))
3 vtocl4ga.4 . . . 4 (𝑤 = 𝐷 → (𝜌𝜃))
43imbi2d 339 . . 3 (𝑤 = 𝐷 → (((𝐴𝑄𝐵𝑅) → 𝜌) ↔ ((𝐴𝑄𝐵𝑅) → 𝜃)))
5 vtocl4ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
65imbi2d 339 . . . . 5 (𝑥 = 𝐴 → (((𝑧𝑆𝑤𝑇) → 𝜑) ↔ ((𝑧𝑆𝑤𝑇) → 𝜓)))
7 vtocl4ga.2 . . . . . 6 (𝑦 = 𝐵 → (𝜓𝜒))
87imbi2d 339 . . . . 5 (𝑦 = 𝐵 → (((𝑧𝑆𝑤𝑇) → 𝜓) ↔ ((𝑧𝑆𝑤𝑇) → 𝜒)))
9 vtocl4ga.5 . . . . . 6 (((𝑥𝑄𝑦𝑅) ∧ (𝑧𝑆𝑤𝑇)) → 𝜑)
109ex 411 . . . . 5 ((𝑥𝑄𝑦𝑅) → ((𝑧𝑆𝑤𝑇) → 𝜑))
116, 8, 10vtocl2ga 3557 . . . 4 ((𝐴𝑄𝐵𝑅) → ((𝑧𝑆𝑤𝑇) → 𝜒))
1211com12 32 . . 3 ((𝑧𝑆𝑤𝑇) → ((𝐴𝑄𝐵𝑅) → 𝜒))
132, 4, 12vtocl2ga 3557 . 2 ((𝐶𝑆𝐷𝑇) → ((𝐴𝑄𝐵𝑅) → 𝜃))
1413impcom 406 1 (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802
This theorem is referenced by:  wrd2ind  14709
  Copyright terms: Public domain W3C validator