![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclegft | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3546.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
Ref | Expression |
---|---|
vtoclegft | ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) | |
2 | 1 | ax-gen 1797 | . . . . 5 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) |
3 | ceqsalt 3505 | . . . . 5 ⊢ ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) | |
4 | 2, 3 | mp3an2 1449 | . . . 4 ⊢ ((Ⅎ𝑥𝜑 ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) |
6 | 5 | biimpd 228 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜑)) |
7 | 6 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∀wal 1539 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-clel 2810 |
This theorem is referenced by: vtoclefex 36210 |
Copyright terms: Public domain | W3C validator |