MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclegft Structured version   Visualization version   GIF version

Theorem vtoclegft 3601
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3575.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Jan-2025.)
Assertion
Ref Expression
vtoclegft ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem vtoclegft
StepHypRef Expression
1 biidd 262 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜑))
21ax-gen 1793 . . . . 5 𝑥(𝑥 = 𝐴 → (𝜑𝜑))
3 ceqsalt 3523 . . . . 5 ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜑)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑))
42, 3mp3an2 1449 . . . 4 ((Ⅎ𝑥𝜑𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑))
54ancoms 458 . . 3 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑))
65biimpd 229 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜑))
763impia 1117 1 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wnf 1781  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-clel 2819
This theorem is referenced by:  vtoclefex  37300
  Copyright terms: Public domain W3C validator