Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclegft | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3513.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
vtoclegft | ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
2 | exim 1837 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) | |
3 | 1, 2 | mpan9 506 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
4 | 3 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
5 | 19.9t 2200 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
6 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → (∃𝑥𝜑 ↔ 𝜑)) |
7 | 4, 6 | mpbid 231 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: vtoclefex 35432 |
Copyright terms: Public domain | W3C validator |