| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclegft | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3547.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| Ref | Expression |
|---|---|
| vtoclegft | ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) | |
| 2 | 1 | ax-gen 1794 | . . . . 5 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) |
| 3 | ceqsalt 3499 | . . . . 5 ⊢ ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) | |
| 4 | 2, 3 | mp3an2 1450 | . . . 4 ⊢ ((Ⅎ𝑥𝜑 ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜑)) |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜑)) |
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-clel 2808 |
| This theorem is referenced by: vtoclefex 37276 |
| Copyright terms: Public domain | W3C validator |