MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl4g Structured version   Visualization version   GIF version

Theorem vtocl4g 3519
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.)
Hypotheses
Ref Expression
vtocl4g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl4g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl4g.3 (𝑧 = 𝐶 → (𝜒𝜌))
vtocl4g.4 (𝑤 = 𝐷 → (𝜌𝜃))
vtocl4g.5 𝜑
Assertion
Ref Expression
vtocl4g (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝜓,𝑥   𝜒,𝑦   𝑧,𝐶   𝑤,𝐶   𝑤,𝐷   𝑧,𝐴   𝑧,𝑄   𝑧,𝐵   𝑧,𝑅   𝜌,𝑧   𝑤,𝐴   𝑤,𝑄   𝑤,𝐵   𝑤,𝑅   𝜃,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑧)   𝜌(𝑥,𝑦,𝑤)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem vtocl4g
StepHypRef Expression
1 vtocl4g.3 . . . 4 (𝑧 = 𝐶 → (𝜒𝜌))
21imbi2d 341 . . 3 (𝑧 = 𝐶 → (((𝐴𝑄𝐵𝑅) → 𝜒) ↔ ((𝐴𝑄𝐵𝑅) → 𝜌)))
3 vtocl4g.4 . . . 4 (𝑤 = 𝐷 → (𝜌𝜃))
43imbi2d 341 . . 3 (𝑤 = 𝐷 → (((𝐴𝑄𝐵𝑅) → 𝜌) ↔ ((𝐴𝑄𝐵𝑅) → 𝜃)))
5 vtocl4g.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
6 vtocl4g.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
7 vtocl4g.5 . . . 4 𝜑
85, 6, 7vtocl2g 3510 . . 3 ((𝐴𝑄𝐵𝑅) → 𝜒)
92, 4, 8vtocl2g 3510 . 2 ((𝐶𝑆𝐷𝑇) → ((𝐴𝑄𝐵𝑅) → 𝜃))
109impcom 408 1 (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434
This theorem is referenced by:  vtocl4ga  3520
  Copyright terms: Public domain W3C validator