|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtocl4g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| vtocl4g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl4g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl4g.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) | 
| vtocl4g.4 | ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) | 
| vtocl4g.5 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| vtocl4g | ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtocl4g.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌))) | 
| 3 | vtocl4g.4 | . . . 4 ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) | |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑤 = 𝐷 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃))) | 
| 5 | vtocl4g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | vtocl4g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 7 | vtocl4g.5 | . . . 4 ⊢ 𝜑 | |
| 8 | 5, 6, 7 | vtocl2g 3573 | . . 3 ⊢ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒) | 
| 9 | 2, 4, 8 | vtocl2g 3573 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃)) | 
| 10 | 9 | impcom 407 | 1 ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 | 
| This theorem is referenced by: vtocl4gaOLD 3586 | 
| Copyright terms: Public domain | W3C validator |