Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl4g | Structured version Visualization version GIF version |
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) |
Ref | Expression |
---|---|
vtocl4g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl4g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl4g.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) |
vtocl4g.4 | ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) |
vtocl4g.5 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl4g | ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl4g.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌))) |
3 | vtocl4g.4 | . . . 4 ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) | |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑤 = 𝐷 → (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜌) ↔ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
5 | vtocl4g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | vtocl4g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
7 | vtocl4g.5 | . . . 4 ⊢ 𝜑 | |
8 | 5, 6, 7 | vtocl2g 3500 | . . 3 ⊢ ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
9 | 2, 4, 8 | vtocl2g 3500 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → ((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
10 | 9 | impcom 407 | 1 ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: vtocl4ga 3510 |
Copyright terms: Public domain | W3C validator |