Step | Hyp | Ref
| Expression |
1 | | lencl 14421 |
. . . . 5
β’ (π΄ β Word π β (β―βπ΄) β
β0) |
2 | | eqeq2 2748 |
. . . . . . . . 9
β’ (π = 0 β
((β―βπ₯) = π β (β―βπ₯) = 0)) |
3 | 2 | anbi2d 629 |
. . . . . . . 8
β’ (π = 0 β
(((β―βπ₯) =
(β―βπ€) β§
(β―βπ₯) = π) β ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = 0))) |
4 | 3 | imbi1d 341 |
. . . . . . 7
β’ (π = 0 β
((((β―βπ₯) =
(β―βπ€) β§
(β―βπ₯) = π) β π) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = 0) β π))) |
5 | 4 | 2ralbidv 3212 |
. . . . . 6
β’ (π = 0 β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = 0) β π))) |
6 | | eqeq2 2748 |
. . . . . . . . 9
β’ (π = π β ((β―βπ₯) = π β (β―βπ₯) = π)) |
7 | 6 | anbi2d 629 |
. . . . . . . 8
β’ (π = π β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π))) |
8 | 7 | imbi1d 341 |
. . . . . . 7
β’ (π = π β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π))) |
9 | 8 | 2ralbidv 3212 |
. . . . . 6
β’ (π = π β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π))) |
10 | | eqeq2 2748 |
. . . . . . . . 9
β’ (π = (π + 1) β ((β―βπ₯) = π β (β―βπ₯) = (π + 1))) |
11 | 10 | anbi2d 629 |
. . . . . . . 8
β’ (π = (π + 1) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) |
12 | 11 | imbi1d 341 |
. . . . . . 7
β’ (π = (π + 1) β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π))) |
13 | 12 | 2ralbidv 3212 |
. . . . . 6
β’ (π = (π + 1) β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π))) |
14 | | eqeq2 2748 |
. . . . . . . . 9
β’ (π = (β―βπ΄) β ((β―βπ₯) = π β (β―βπ₯) = (β―βπ΄))) |
15 | 14 | anbi2d 629 |
. . . . . . . 8
β’ (π = (β―βπ΄) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)))) |
16 | 15 | imbi1d 341 |
. . . . . . 7
β’ (π = (β―βπ΄) β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
17 | 16 | 2ralbidv 3212 |
. . . . . 6
β’ (π = (β―βπ΄) β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
18 | | eqeq1 2740 |
. . . . . . . . . . 11
β’
((β―βπ₯) =
0 β ((β―βπ₯)
= (β―βπ€) β
0 = (β―βπ€))) |
19 | 18 | adantl 482 |
. . . . . . . . . 10
β’ (((π€ β Word π β§ π₯ β Word π) β§ (β―βπ₯) = 0) β ((β―βπ₯) = (β―βπ€) β 0 =
(β―βπ€))) |
20 | | eqcom 2743 |
. . . . . . . . . . . . . 14
β’ (0 =
(β―βπ€) β
(β―βπ€) =
0) |
21 | | hasheq0 14263 |
. . . . . . . . . . . . . 14
β’ (π€ β Word π β ((β―βπ€) = 0 β π€ = β
)) |
22 | 20, 21 | bitrid 282 |
. . . . . . . . . . . . 13
β’ (π€ β Word π β (0 = (β―βπ€) β π€ = β
)) |
23 | | hasheq0 14263 |
. . . . . . . . . . . . . . 15
β’ (π₯ β Word π β ((β―βπ₯) = 0 β π₯ = β
)) |
24 | | wrd2ind.6 |
. . . . . . . . . . . . . . . . 17
β’ π |
25 | | wrd2ind.1 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ = β
β§ π€ = β
) β (π β π)) |
26 | 24, 25 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ = β
β§ π€ = β
) β π) |
27 | 26 | ex 413 |
. . . . . . . . . . . . . . 15
β’ (π₯ = β
β (π€ = β
β π)) |
28 | 23, 27 | syl6bi 252 |
. . . . . . . . . . . . . 14
β’ (π₯ β Word π β ((β―βπ₯) = 0 β (π€ = β
β π))) |
29 | 28 | com13 88 |
. . . . . . . . . . . . 13
β’ (π€ = β
β
((β―βπ₯) = 0
β (π₯ β Word π β π))) |
30 | 22, 29 | syl6bi 252 |
. . . . . . . . . . . 12
β’ (π€ β Word π β (0 = (β―βπ€) β ((β―βπ₯) = 0 β (π₯ β Word π β π)))) |
31 | 30 | com24 95 |
. . . . . . . . . . 11
β’ (π€ β Word π β (π₯ β Word π β ((β―βπ₯) = 0 β (0 = (β―βπ€) β π)))) |
32 | 31 | imp31 418 |
. . . . . . . . . 10
β’ (((π€ β Word π β§ π₯ β Word π) β§ (β―βπ₯) = 0) β (0 = (β―βπ€) β π)) |
33 | 19, 32 | sylbid 239 |
. . . . . . . . 9
β’ (((π€ β Word π β§ π₯ β Word π) β§ (β―βπ₯) = 0) β ((β―βπ₯) = (β―βπ€) β π)) |
34 | 33 | ex 413 |
. . . . . . . 8
β’ ((π€ β Word π β§ π₯ β Word π) β ((β―βπ₯) = 0 β ((β―βπ₯) = (β―βπ€) β π))) |
35 | 34 | impcomd 412 |
. . . . . . 7
β’ ((π€ β Word π β§ π₯ β Word π) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = 0) β π)) |
36 | 35 | rgen2 3194 |
. . . . . 6
β’
βπ€ β
Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = 0) β π) |
37 | | fveq2 6842 |
. . . . . . . . . . . . 13
β’ (π₯ = π¦ β (β―βπ₯) = (β―βπ¦)) |
38 | | fveq2 6842 |
. . . . . . . . . . . . 13
β’ (π€ = π’ β (β―βπ€) = (β―βπ’)) |
39 | 37, 38 | eqeqan12d 2750 |
. . . . . . . . . . . 12
β’ ((π₯ = π¦ β§ π€ = π’) β ((β―βπ₯) = (β―βπ€) β (β―βπ¦) = (β―βπ’))) |
40 | | fveqeq2 6851 |
. . . . . . . . . . . . 13
β’ (π₯ = π¦ β ((β―βπ₯) = π β (β―βπ¦) = π)) |
41 | 40 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π₯ = π¦ β§ π€ = π’) β ((β―βπ₯) = π β (β―βπ¦) = π)) |
42 | 39, 41 | anbi12d 631 |
. . . . . . . . . . 11
β’ ((π₯ = π¦ β§ π€ = π’) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β ((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π))) |
43 | | wrd2ind.2 |
. . . . . . . . . . 11
β’ ((π₯ = π¦ β§ π€ = π’) β (π β π)) |
44 | 42, 43 | imbi12d 344 |
. . . . . . . . . 10
β’ ((π₯ = π¦ β§ π€ = π’) β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β (((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π))) |
45 | 44 | ancoms 459 |
. . . . . . . . 9
β’ ((π€ = π’ β§ π₯ = π¦) β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β (((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π))) |
46 | 45 | cbvraldva 3326 |
. . . . . . . 8
β’ (π€ = π’ β (βπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π))) |
47 | 46 | cbvralvw 3225 |
. . . . . . 7
β’
(βπ€ β
Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ’ β Word πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) |
48 | | pfxcl 14565 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β Word π β (π€ prefix ((β―βπ€) β 1)) β Word π) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β Word π β§ π₯ β Word π) β (π€ prefix ((β―βπ€) β 1)) β Word π) |
50 | 49 | ad2antrl 726 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π€ prefix ((β―βπ€) β 1)) β Word π) |
51 | | simprll 777 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ β Word π) |
52 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ₯) =
(π + 1) β
((β―βπ₯) =
(β―βπ€) β
(π + 1) =
(β―βπ€))) |
53 | | nn0p1nn 12452 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β0
β (π + 1) β
β) |
54 | | eleq1 2825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((β―βπ€) =
(π + 1) β
((β―βπ€) β
β β (π + 1)
β β)) |
55 | 54 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π + 1) = (β―βπ€) β ((β―βπ€) β β β (π + 1) β
β)) |
56 | 53, 55 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π + 1) = (β―βπ€) β (π β β0 β
(β―βπ€) β
β)) |
57 | 52, 56 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ₯) =
(π + 1) β
((β―βπ₯) =
(β―βπ€) β
(π β
β0 β (β―βπ€) β β))) |
58 | 57 | impcom 408 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπ₯)
= (β―βπ€) β§
(β―βπ₯) = (π + 1)) β (π β β0
β (β―βπ€)
β β)) |
59 | 58 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1))) β (π β β0 β
(β―βπ€) β
β)) |
60 | 59 | impcom 408 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ€) β
β) |
61 | 60 | nnge1d 12201 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β 1 β€ (β―βπ€)) |
62 | | wrdlenge1n0 14438 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ β Word π β (π€ β β
β 1 β€
(β―βπ€))) |
63 | 51, 62 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π€ β β
β 1 β€
(β―βπ€))) |
64 | 61, 63 | mpbird 256 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ β β
) |
65 | | lswcl 14456 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β Word π β§ π€ β β
) β (lastSβπ€) β π) |
66 | 51, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (lastSβπ€) β π) |
67 | 50, 66 | jca 512 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((π€ prefix ((β―βπ€) β 1)) β Word π β§ (lastSβπ€) β π)) |
68 | | pfxcl 14565 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β Word π β (π₯ prefix ((β―βπ₯) β 1)) β Word π) |
69 | 68 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((π€ β Word π β§ π₯ β Word π) β (π₯ prefix ((β―βπ₯) β 1)) β Word π) |
70 | 69 | ad2antrl 726 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π₯ prefix ((β―βπ₯) β 1)) β Word π) |
71 | | simprlr 778 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ β Word π) |
72 | | eleq1 2825 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπ₯) =
(π + 1) β
((β―βπ₯) β
β β (π + 1)
β β)) |
73 | 53, 72 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπ₯) =
(π + 1) β (π β β0
β (β―βπ₯)
β β)) |
74 | 73 | ad2antll 727 |
. . . . . . . . . . . . . . . . . 18
β’ (((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1))) β (π β β0 β
(β―βπ₯) β
β)) |
75 | 74 | impcom 408 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ₯) β
β) |
76 | 75 | nnge1d 12201 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β 1 β€ (β―βπ₯)) |
77 | | wrdlenge1n0 14438 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β Word π β (π₯ β β
β 1 β€
(β―βπ₯))) |
78 | 71, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π₯ β β
β 1 β€
(β―βπ₯))) |
79 | 76, 78 | mpbird 256 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ β β
) |
80 | | lswcl 14456 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β Word π β§ π₯ β β
) β (lastSβπ₯) β π) |
81 | 71, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (lastSβπ₯) β π) |
82 | 67, 70, 81 | jca32 516 |
. . . . . . . . . . . . 13
β’ ((π β β0
β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (((π€ prefix ((β―βπ€) β 1)) β Word π β§ (lastSβπ€) β π) β§ ((π₯ prefix ((β―βπ₯) β 1)) β Word π β§ (lastSβπ₯) β π))) |
83 | 82 | adantlr 713 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (((π€ prefix ((β―βπ€) β 1)) β Word π β§ (lastSβπ€) β π) β§ ((π₯ prefix ((β―βπ₯) β 1)) β Word π β§ (lastSβπ₯) β π))) |
84 | | simprl 769 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π€ β Word π β§ π₯ β Word π)) |
85 | | simplr 767 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β βπ’ β Word πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) |
86 | | simprrl 779 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ₯) = (β―βπ€)) |
87 | 86 | oveq1d 7372 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ₯) β 1) =
((β―βπ€) β
1)) |
88 | | simprlr 778 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ β Word π) |
89 | | fzossfz 13591 |
. . . . . . . . . . . . . . . . . 18
β’
(0..^(β―βπ₯)) β (0...(β―βπ₯)) |
90 | | simprrr 780 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ₯) = (π + 1)) |
91 | 53 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π + 1) β β) |
92 | 90, 91 | eqeltrd 2837 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ₯) β
β) |
93 | | fzo0end 13664 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπ₯)
β β β ((β―βπ₯) β 1) β (0..^(β―βπ₯))) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ₯) β 1) β
(0..^(β―βπ₯))) |
95 | 89, 94 | sselid 3942 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ₯) β 1) β
(0...(β―βπ₯))) |
96 | | pfxlen 14571 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β Word π β§ ((β―βπ₯) β 1) β (0...(β―βπ₯))) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
((β―βπ₯) β
1)) |
97 | 88, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
((β―βπ₯) β
1)) |
98 | | simprll 777 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ β Word π) |
99 | | oveq1 7364 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ€) =
(β―βπ₯) β
((β―βπ€) β
1) = ((β―βπ₯)
β 1)) |
100 | | oveq2 7365 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ€) =
(β―βπ₯) β
(0...(β―βπ€)) =
(0...(β―βπ₯))) |
101 | 99, 100 | eleq12d 2831 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ€) =
(β―βπ₯) β
(((β―βπ€) β
1) β (0...(β―βπ€)) β ((β―βπ₯) β 1) β (0...(β―βπ₯)))) |
102 | 101 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπ₯) =
(β―βπ€) β
(((β―βπ€) β
1) β (0...(β―βπ€)) β ((β―βπ₯) β 1) β (0...(β―βπ₯)))) |
103 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β―βπ₯)
= (β―βπ€) β§
(β―βπ₯) = (π + 1)) β
(((β―βπ€) β
1) β (0...(β―βπ€)) β ((β―βπ₯) β 1) β (0...(β―βπ₯)))) |
104 | 103 | ad2antll 727 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (((β―βπ€) β 1) β
(0...(β―βπ€))
β ((β―βπ₯)
β 1) β (0...(β―βπ₯)))) |
105 | 95, 104 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ€) β 1) β
(0...(β―βπ€))) |
106 | | pfxlen 14571 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ β Word π β§ ((β―βπ€) β 1) β (0...(β―βπ€))) β (β―β(π€ prefix ((β―βπ€) β 1))) =
((β―βπ€) β
1)) |
107 | 98, 105, 106 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―β(π€ prefix ((β―βπ€) β 1))) =
((β―βπ€) β
1)) |
108 | 87, 97, 107 | 3eqtr4d 2786 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1)))) |
109 | 90 | oveq1d 7372 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ₯) β 1) = ((π + 1) β
1)) |
110 | | nn0cn 12423 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β0
β π β
β) |
111 | 110 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π β β) |
112 | | ax-1cn 11109 |
. . . . . . . . . . . . . . . . 17
β’ 1 β
β |
113 | | pncan 11407 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β β§ 1 β
β) β ((π + 1)
β 1) = π) |
114 | 111, 112,
113 | sylancl 586 |
. . . . . . . . . . . . . . . 16
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((π + 1) β 1) = π) |
115 | 97, 109, 114 | 3eqtrd 2780 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―β(π₯ prefix ((β―βπ₯) β 1))) = π) |
116 | 108, 115 | jca 512 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))) β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = π)) |
117 | 69 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β (π₯ prefix ((β―βπ₯) β 1)) β Word π) |
118 | | fveq2 6842 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β (β―βπ¦) = (β―β(π₯ prefix ((β―βπ₯) β 1)))) |
119 | | fveq2 6842 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β (β―βπ’) = (β―β(π€ prefix ((β―βπ€) β 1)))) |
120 | 118, 119 | eqeqan12d 2750 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π¦ = (π₯ prefix ((β―βπ₯) β 1)) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β ((β―βπ¦) = (β―βπ’) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))))) |
121 | 120 | expcom 414 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ((β―βπ¦) = (β―βπ’) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1)))))) |
122 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ((β―βπ¦) = (β―βπ’) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1)))))) |
123 | 122 | imp 407 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β ((β―βπ¦) = (β―βπ’) β (β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))))) |
124 | | fveqeq2 6851 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ((β―βπ¦) = π β (β―β(π₯ prefix ((β―βπ₯) β 1))) = π)) |
125 | 124 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β ((β―βπ¦) = π β (β―β(π₯ prefix ((β―βπ₯) β 1))) = π)) |
126 | 123, 125 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β (((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β ((β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β 1))) β§
(β―β(π₯ prefix
((β―βπ₯) β
1))) = π))) |
127 | | vex 3449 |
. . . . . . . . . . . . . . . . . . . . 21
β’ π¦ β V |
128 | | vex 3449 |
. . . . . . . . . . . . . . . . . . . . 21
β’ π’ β V |
129 | 127, 128,
43 | sbc2ie 3822 |
. . . . . . . . . . . . . . . . . . . 20
β’
([π¦ / π₯][π’ / π€]π β π) |
130 | 129 | bicomi 223 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β [π¦ / π₯][π’ / π€]π) |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β (π β [π¦ / π₯][π’ / π€]π)) |
132 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β π¦ = (π₯ prefix ((β―βπ₯) β 1))) |
133 | 132 | sbceq1d 3744 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β ([π¦ / π₯][π’ / π€]π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][π’ / π€]π)) |
134 | | dfsbcq 3741 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ([π’ / π€]π β [(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
135 | 134 | sbcbidv 3798 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ([(π₯ prefix ((β―βπ₯) β 1)) / π₯][π’ / π€]π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
136 | 135 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β ([(π₯ prefix ((β―βπ₯) β 1)) / π₯][π’ / π€]π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β ([(π₯ prefix ((β―βπ₯) β 1)) / π₯][π’ / π€]π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
138 | 131, 133,
137 | 3bitrd 304 |
. . . . . . . . . . . . . . . . 17
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β (π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
139 | 126, 138 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
β’ ((((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β§ π¦ = (π₯ prefix ((β―βπ₯) β 1))) β ((((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π) β (((β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))) β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = π) β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π))) |
140 | 117, 139 | rspcdv 3573 |
. . . . . . . . . . . . . . 15
β’ (((π€ β Word π β§ π₯ β Word π) β§ π’ = (π€ prefix ((β―βπ€) β 1))) β (βπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π) β (((β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))) β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = π) β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π))) |
141 | 49, 140 | rspcimdv 3571 |
. . . . . . . . . . . . . 14
β’ ((π€ β Word π β§ π₯ β Word π) β (βπ’ β Word πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π) β (((β―β(π₯ prefix ((β―βπ₯) β 1))) =
(β―β(π€ prefix
((β―βπ€) β
1))) β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = π) β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π))) |
142 | 84, 85, 116, 141 | syl3c 66 |
. . . . . . . . . . . . 13
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π) |
143 | 142, 108 | jca 512 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β
1))))) |
144 | | dfsbcq 3741 |
. . . . . . . . . . . . . . . 16
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ([π’ / π€][π¦ / π₯]π β [(π€ prefix ((β―βπ€) β 1)) / π€][π¦ / π₯]π)) |
145 | | sbccom 3827 |
. . . . . . . . . . . . . . . 16
β’
([(π€ prefix
((β―βπ€) β
1)) / π€][π¦ / π₯]π β [π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π) |
146 | 144, 145 | bitrdi 286 |
. . . . . . . . . . . . . . 15
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ([π’ / π€][π¦ / π₯]π β [π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
147 | 119 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ((β―βπ¦) = (β―βπ’) β (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β
1))))) |
148 | 146, 147 | anbi12d 631 |
. . . . . . . . . . . . . 14
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β (([π’ / π€][π¦ / π₯]π β§ (β―βπ¦) = (β―βπ’)) β ([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))))) |
149 | | oveq1 7364 |
. . . . . . . . . . . . . . 15
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β (π’ ++ β¨βπ ββ©) = ((π€ prefix ((β―βπ€) β 1)) ++ β¨βπ ββ©)) |
150 | 149 | sbceq1d 3744 |
. . . . . . . . . . . . . 14
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ([(π’ ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π β [((π€ prefix ((β―βπ€) β 1)) ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π)) |
151 | 148, 150 | imbi12d 344 |
. . . . . . . . . . . . 13
β’ (π’ = (π€ prefix ((β―βπ€) β 1)) β ((([π’ / π€][π¦ / π₯]π β§ (β―βπ¦) = (β―βπ’)) β [(π’ ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π) β (([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [((π€ prefix ((β―βπ€) β 1)) ++
β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π))) |
152 | | s1eq 14488 |
. . . . . . . . . . . . . . . . 17
β’ (π = (lastSβπ€) β β¨βπ ββ© =
β¨β(lastSβπ€)ββ©) |
153 | 152 | oveq2d 7373 |
. . . . . . . . . . . . . . . 16
β’ (π = (lastSβπ€) β ((π€ prefix ((β―βπ€) β 1)) ++ β¨βπ ββ©) = ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©)) |
154 | 153 | sbceq1d 3744 |
. . . . . . . . . . . . . . 15
β’ (π = (lastSβπ€) β ([((π€ prefix ((β―βπ€) β 1)) ++
β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π β [((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π)) |
155 | 154 | imbi2d 340 |
. . . . . . . . . . . . . 14
β’ (π = (lastSβπ€) β ((([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [((π€ prefix ((β―βπ€) β 1)) ++
β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π) β (([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π))) |
156 | | sbccom 3827 |
. . . . . . . . . . . . . . . 16
β’
([((π€ prefix
((β―βπ€) β
1)) ++ β¨β(lastSβπ€)ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π β [(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π) |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π = (lastSβπ€) β ([((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π β [(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
158 | 157 | imbi2d 340 |
. . . . . . . . . . . . . 14
β’ (π = (lastSβπ€) β ((([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π) β (([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π))) |
159 | 155, 158 | bitrd 278 |
. . . . . . . . . . . . 13
β’ (π = (lastSβπ€) β ((([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [((π€ prefix ((β―βπ€) β 1)) ++
β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π) β (([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π))) |
160 | | dfsbcq 3741 |
. . . . . . . . . . . . . . 15
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β [(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π)) |
161 | | fveqeq2 6851 |
. . . . . . . . . . . . . . 15
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ((β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1))) β
(β―β(π₯ prefix
((β―βπ₯) β
1))) = (β―β(π€
prefix ((β―βπ€)
β 1))))) |
162 | 160, 161 | anbi12d 631 |
. . . . . . . . . . . . . 14
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β (([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β ([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β
1)))))) |
163 | | oveq1 7364 |
. . . . . . . . . . . . . . 15
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β (π¦ ++ β¨βπ§ββ©) = ((π₯ prefix ((β―βπ₯) β 1)) ++ β¨βπ§ββ©)) |
164 | 163 | sbceq1d 3744 |
. . . . . . . . . . . . . 14
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ([(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π β [((π₯ prefix ((β―βπ₯) β 1)) ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
165 | 162, 164 | imbi12d 344 |
. . . . . . . . . . . . 13
β’ (π¦ = (π₯ prefix ((β―βπ₯) β 1)) β ((([π¦ / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―βπ¦) = (β―β(π€ prefix ((β―βπ€) β 1)))) β [(π¦ ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π) β (([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β 1)))) β
[((π₯ prefix
((β―βπ₯) β
1)) ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π))) |
166 | | s1eq 14488 |
. . . . . . . . . . . . . . . 16
β’ (π§ = (lastSβπ₯) β β¨βπ§ββ© =
β¨β(lastSβπ₯)ββ©) |
167 | 166 | oveq2d 7373 |
. . . . . . . . . . . . . . 15
β’ (π§ = (lastSβπ₯) β ((π₯ prefix ((β―βπ₯) β 1)) ++ β¨βπ§ββ©) = ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©)) |
168 | 167 | sbceq1d 3744 |
. . . . . . . . . . . . . 14
β’ (π§ = (lastSβπ₯) β ([((π₯ prefix ((β―βπ₯) β 1)) ++
β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π β [((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
169 | 168 | imbi2d 340 |
. . . . . . . . . . . . 13
β’ (π§ = (lastSβπ₯) β ((([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β 1)))) β
[((π₯ prefix
((β―βπ₯) β
1)) ++ β¨βπ§ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π) β (([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β 1)))) β
[((π₯ prefix
((β―βπ₯) β
1)) ++ β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π))) |
170 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
β’ ((((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β§ (β―βπ¦) = (β―βπ’)) β (π¦ β Word π β§ π§ β π)) |
171 | | simpll 765 |
. . . . . . . . . . . . . . . . 17
β’ ((((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β§ (β―βπ¦) = (β―βπ’)) β (π’ β Word π β§ π β π)) |
172 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ ((((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β§ (β―βπ¦) = (β―βπ’)) β (β―βπ¦) = (β―βπ’)) |
173 | | wrd2ind.7 |
. . . . . . . . . . . . . . . . 17
β’ (((π¦ β Word π β§ π§ β π) β§ (π’ β Word π β§ π β π) β§ (β―βπ¦) = (β―βπ’)) β (π β π)) |
174 | 170, 171,
172, 173 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’ ((((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β§ (β―βπ¦) = (β―βπ’)) β (π β π)) |
175 | 43 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ = π’ β§ π₯ = π¦) β (π β π)) |
176 | 128, 127,
175 | sbc2ie 3822 |
. . . . . . . . . . . . . . . 16
β’
([π’ / π€][π¦ / π₯]π β π) |
177 | | ovex 7390 |
. . . . . . . . . . . . . . . . 17
β’ (π’ ++ β¨βπ ββ©) β
V |
178 | | ovex 7390 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ ++ β¨βπ§ββ©) β
V |
179 | | wrd2ind.3 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ = (π¦ ++ β¨βπ§ββ©) β§ π€ = (π’ ++ β¨βπ ββ©)) β (π β π)) |
180 | 179 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ = (π’ ++ β¨βπ ββ©) β§ π₯ = (π¦ ++ β¨βπ§ββ©)) β (π β π)) |
181 | 177, 178,
180 | sbc2ie 3822 |
. . . . . . . . . . . . . . . 16
β’
([(π’ ++
β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π β π) |
182 | 174, 176,
181 | 3imtr4g 295 |
. . . . . . . . . . . . . . 15
β’ ((((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β§ (β―βπ¦) = (β―βπ’)) β ([π’ / π€][π¦ / π₯]π β [(π’ ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π)) |
183 | 182 | ex 413 |
. . . . . . . . . . . . . 14
β’ (((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β ((β―βπ¦) = (β―βπ’) β ([π’ / π€][π¦ / π₯]π β [(π’ ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π))) |
184 | 183 | impcomd 412 |
. . . . . . . . . . . . 13
β’ (((π’ β Word π β§ π β π) β§ (π¦ β Word π β§ π§ β π)) β (([π’ / π€][π¦ / π₯]π β§ (β―βπ¦) = (β―βπ’)) β [(π’ ++ β¨βπ ββ©) / π€][(π¦ ++ β¨βπ§ββ©) / π₯]π)) |
185 | 151, 159,
165, 169, 184 | vtocl4ga 3541 |
. . . . . . . . . . . 12
β’ ((((π€ prefix ((β―βπ€) β 1)) β Word π β§ (lastSβπ€) β π) β§ ((π₯ prefix ((β―βπ₯) β 1)) β Word π β§ (lastSβπ₯) β π)) β (([(π₯ prefix ((β―βπ₯) β 1)) / π₯][(π€ prefix ((β―βπ€) β 1)) / π€]π β§ (β―β(π₯ prefix ((β―βπ₯) β 1))) = (β―β(π€ prefix ((β―βπ€) β 1)))) β
[((π₯ prefix
((β―βπ₯) β
1)) ++ β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
186 | 83, 143, 185 | sylc 65 |
. . . . . . . . . . 11
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β [((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π) |
187 | | eqtr2 2760 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπ₯)
= (β―βπ€) β§
(β―βπ₯) = (π + 1)) β
(β―βπ€) = (π + 1)) |
188 | 187 | ad2antll 727 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ€) = (π + 1)) |
189 | 188, 91 | eqeltrd 2837 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (β―βπ€) β
β) |
190 | | wrdfin 14420 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β Word π β π€ β Fin) |
191 | 190 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β Word π β§ π₯ β Word π) β π€ β Fin) |
192 | 191 | ad2antrl 726 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ β Fin) |
193 | | hashnncl 14266 |
. . . . . . . . . . . . . . 15
β’ (π€ β Fin β
((β―βπ€) β
β β π€ β
β
)) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ€) β β β π€ β β
)) |
195 | 189, 194 | mpbid 231 |
. . . . . . . . . . . . 13
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ β β
) |
196 | | pfxlswccat 14601 |
. . . . . . . . . . . . . 14
β’ ((π€ β Word π β§ π€ β β
) β ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) = π€) |
197 | 196 | eqcomd 2742 |
. . . . . . . . . . . . 13
β’ ((π€ β Word π β§ π€ β β
) β π€ = ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©)) |
198 | 98, 195, 197 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π€ = ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©)) |
199 | | wrdfin 14420 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β Word π β π₯ β Fin) |
200 | 199 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β Word π β§ π₯ β Word π) β π₯ β Fin) |
201 | 200 | ad2antrl 726 |
. . . . . . . . . . . . . . 15
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ β Fin) |
202 | | hashnncl 14266 |
. . . . . . . . . . . . . . 15
β’ (π₯ β Fin β
((β―βπ₯) β
β β π₯ β
β
)) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β ((β―βπ₯) β β β π₯ β β
)) |
204 | 92, 203 | mpbid 231 |
. . . . . . . . . . . . 13
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ β β
) |
205 | | pfxlswccat 14601 |
. . . . . . . . . . . . . 14
β’ ((π₯ β Word π β§ π₯ β β
) β ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) = π₯) |
206 | 205 | eqcomd 2742 |
. . . . . . . . . . . . 13
β’ ((π₯ β Word π β§ π₯ β β
) β π₯ = ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©)) |
207 | 88, 204, 206 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π₯ = ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©)) |
208 | | sbceq1a 3750 |
. . . . . . . . . . . . 13
β’ (π€ = ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) β (π β [((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
209 | | sbceq1a 3750 |
. . . . . . . . . . . . 13
β’ (π₯ = ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) β ([((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π β [((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
210 | 208, 209 | sylan9bb 510 |
. . . . . . . . . . . 12
β’ ((π€ = ((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) β§ π₯ = ((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©)) β (π β [((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
211 | 198, 207,
210 | syl2anc 584 |
. . . . . . . . . . 11
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β (π β [((π₯ prefix ((β―βπ₯) β 1)) ++
β¨β(lastSβπ₯)ββ©) / π₯][((π€ prefix ((β―βπ€) β 1)) ++
β¨β(lastSβπ€)ββ©) / π€]π)) |
212 | 186, 211 | mpbird 256 |
. . . . . . . . . 10
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ ((π€ β Word π β§ π₯ β Word π) β§ ((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)))) β π) |
213 | 212 | expr 457 |
. . . . . . . . 9
β’ (((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β§ (π€ β Word π β§ π₯ β Word π)) β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π)) |
214 | 213 | ralrimivva 3197 |
. . . . . . . 8
β’ ((π β β0
β§ βπ’ β Word
πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π)) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π)) |
215 | 214 | ex 413 |
. . . . . . 7
β’ (π β β0
β (βπ’ β
Word πβπ¦ β Word π(((β―βπ¦) = (β―βπ’) β§ (β―βπ¦) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π))) |
216 | 47, 215 | biimtrid 241 |
. . . . . 6
β’ (π β β0
β (βπ€ β
Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = π) β π) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (π + 1)) β π))) |
217 | 5, 9, 13, 17, 36, 216 | nn0ind 12598 |
. . . . 5
β’
((β―βπ΄)
β β0 β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π)) |
218 | 1, 217 | syl 17 |
. . . 4
β’ (π΄ β Word π β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π)) |
219 | 218 | 3ad2ant1 1133 |
. . 3
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π)) |
220 | | fveq2 6842 |
. . . . . . . . 9
β’ (π€ = π΅ β (β―βπ€) = (β―βπ΅)) |
221 | 220 | eqeq2d 2747 |
. . . . . . . 8
β’ (π€ = π΅ β ((β―βπ₯) = (β―βπ€) β (β―βπ₯) = (β―βπ΅))) |
222 | 221 | anbi1d 630 |
. . . . . . 7
β’ (π€ = π΅ β (((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β ((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)))) |
223 | | wrd2ind.5 |
. . . . . . 7
β’ (π€ = π΅ β (π β π)) |
224 | 222, 223 | imbi12d 344 |
. . . . . 6
β’ (π€ = π΅ β ((((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π) β (((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
225 | 224 | ralbidv 3174 |
. . . . 5
β’ (π€ = π΅ β (βπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π) β βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
226 | 225 | rspcv 3577 |
. . . 4
β’ (π΅ β Word π β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π) β βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
227 | 226 | 3ad2ant2 1134 |
. . 3
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β (βπ€ β Word πβπ₯ β Word π(((β―βπ₯) = (β―βπ€) β§ (β―βπ₯) = (β―βπ΄)) β π) β βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π))) |
228 | 219, 227 | mpd 15 |
. 2
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π)) |
229 | | eqidd 2737 |
. 2
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β (β―βπ΄) = (β―βπ΄)) |
230 | | fveqeq2 6851 |
. . . . . . . . . 10
β’ (π₯ = π΄ β ((β―βπ₯) = (β―βπ΅) β (β―βπ΄) = (β―βπ΅))) |
231 | | fveqeq2 6851 |
. . . . . . . . . 10
β’ (π₯ = π΄ β ((β―βπ₯) = (β―βπ΄) β (β―βπ΄) = (β―βπ΄))) |
232 | 230, 231 | anbi12d 631 |
. . . . . . . . 9
β’ (π₯ = π΄ β (((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β ((β―βπ΄) = (β―βπ΅) β§ (β―βπ΄) = (β―βπ΄)))) |
233 | | wrd2ind.4 |
. . . . . . . . 9
β’ (π₯ = π΄ β (π β π)) |
234 | 232, 233 | imbi12d 344 |
. . . . . . . 8
β’ (π₯ = π΄ β ((((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β (((β―βπ΄) = (β―βπ΅) β§ (β―βπ΄) = (β―βπ΄)) β π))) |
235 | 234 | rspcv 3577 |
. . . . . . 7
β’ (π΄ β Word π β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β (((β―βπ΄) = (β―βπ΅) β§ (β―βπ΄) = (β―βπ΄)) β π))) |
236 | 235 | com23 86 |
. . . . . 6
β’ (π΄ β Word π β (((β―βπ΄) = (β―βπ΅) β§ (β―βπ΄) = (β―βπ΄)) β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β π))) |
237 | 236 | expd 416 |
. . . . 5
β’ (π΄ β Word π β ((β―βπ΄) = (β―βπ΅) β ((β―βπ΄) = (β―βπ΄) β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β π)))) |
238 | 237 | com34 91 |
. . . 4
β’ (π΄ β Word π β ((β―βπ΄) = (β―βπ΅) β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β ((β―βπ΄) = (β―βπ΄) β π)))) |
239 | 238 | imp 407 |
. . 3
β’ ((π΄ β Word π β§ (β―βπ΄) = (β―βπ΅)) β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β ((β―βπ΄) = (β―βπ΄) β π))) |
240 | 239 | 3adant2 1131 |
. 2
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β (βπ₯ β Word π(((β―βπ₯) = (β―βπ΅) β§ (β―βπ₯) = (β―βπ΄)) β π) β ((β―βπ΄) = (β―βπ΄) β π))) |
241 | 228, 229,
240 | mp2d 49 |
1
β’ ((π΄ β Word π β§ π΅ β Word π β§ (β―βπ΄) = (β―βπ΅)) β π) |