MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd2ind Structured version   Visualization version   GIF version

Theorem wrd2ind 14611
Description: Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
wrd2ind.1 ((π‘₯ = βˆ… ∧ 𝑀 = βˆ…) β†’ (πœ‘ ↔ πœ“))
wrd2ind.2 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ (πœ‘ ↔ πœ’))
wrd2ind.3 ((π‘₯ = (𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) ∧ 𝑀 = (𝑒 ++ βŸ¨β€œπ‘ β€βŸ©)) β†’ (πœ‘ ↔ πœƒ))
wrd2ind.4 (π‘₯ = 𝐴 β†’ (𝜌 ↔ 𝜏))
wrd2ind.5 (𝑀 = 𝐡 β†’ (πœ‘ ↔ 𝜌))
wrd2ind.6 πœ“
wrd2ind.7 (((𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (πœ’ β†’ πœƒ))
Assertion
Ref Expression
wrd2ind ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ 𝜏)
Distinct variable groups:   π‘₯,𝑀,𝐴   𝑦,𝑀,𝑧,𝐡,π‘₯   𝑒,𝑠,𝑀,π‘₯,𝑦,𝑧,𝑋   π‘Œ,𝑠,𝑒,𝑀,π‘₯,𝑦,𝑧   πœ’,𝑀,π‘₯   πœ‘,𝑠,𝑒,𝑦,𝑧   𝜏,π‘₯   πœƒ,𝑀,π‘₯   𝜌,𝑀
Allowed substitution hints:   πœ‘(π‘₯,𝑀)   πœ“(π‘₯,𝑦,𝑧,𝑀,𝑒,𝑠)   πœ’(𝑦,𝑧,𝑒,𝑠)   πœƒ(𝑦,𝑧,𝑒,𝑠)   𝜏(𝑦,𝑧,𝑀,𝑒,𝑠)   𝜌(π‘₯,𝑦,𝑧,𝑒,𝑠)   𝐴(𝑦,𝑧,𝑒,𝑠)   𝐡(𝑒,𝑠)

Proof of Theorem wrd2ind
Dummy variables 𝑛 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 14421 . . . . 5 (𝐴 ∈ Word 𝑋 β†’ (β™―β€˜π΄) ∈ β„•0)
2 eqeq2 2748 . . . . . . . . 9 (𝑛 = 0 β†’ ((β™―β€˜π‘₯) = 𝑛 ↔ (β™―β€˜π‘₯) = 0))
32anbi2d 629 . . . . . . . 8 (𝑛 = 0 β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) ↔ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 0)))
43imbi1d 341 . . . . . . 7 (𝑛 = 0 β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 0) β†’ πœ‘)))
542ralbidv 3212 . . . . . 6 (𝑛 = 0 β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 0) β†’ πœ‘)))
6 eqeq2 2748 . . . . . . . . 9 (𝑛 = π‘š β†’ ((β™―β€˜π‘₯) = 𝑛 ↔ (β™―β€˜π‘₯) = π‘š))
76anbi2d 629 . . . . . . . 8 (𝑛 = π‘š β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) ↔ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š)))
87imbi1d 341 . . . . . . 7 (𝑛 = π‘š β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘)))
982ralbidv 3212 . . . . . 6 (𝑛 = π‘š β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘)))
10 eqeq2 2748 . . . . . . . . 9 (𝑛 = (π‘š + 1) β†’ ((β™―β€˜π‘₯) = 𝑛 ↔ (β™―β€˜π‘₯) = (π‘š + 1)))
1110anbi2d 629 . . . . . . . 8 (𝑛 = (π‘š + 1) β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) ↔ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1))))
1211imbi1d 341 . . . . . . 7 (𝑛 = (π‘š + 1) β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘)))
13122ralbidv 3212 . . . . . 6 (𝑛 = (π‘š + 1) β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘)))
14 eqeq2 2748 . . . . . . . . 9 (𝑛 = (β™―β€˜π΄) β†’ ((β™―β€˜π‘₯) = 𝑛 ↔ (β™―β€˜π‘₯) = (β™―β€˜π΄)))
1514anbi2d 629 . . . . . . . 8 (𝑛 = (β™―β€˜π΄) β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) ↔ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄))))
1615imbi1d 341 . . . . . . 7 (𝑛 = (β™―β€˜π΄) β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘)))
17162ralbidv 3212 . . . . . 6 (𝑛 = (β™―β€˜π΄) β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 𝑛) β†’ πœ‘) ↔ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘)))
18 eqeq1 2740 . . . . . . . . . . 11 ((β™―β€˜π‘₯) = 0 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ↔ 0 = (β™―β€˜π‘€)))
1918adantl 482 . . . . . . . . . 10 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ (β™―β€˜π‘₯) = 0) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ↔ 0 = (β™―β€˜π‘€)))
20 eqcom 2743 . . . . . . . . . . . . . 14 (0 = (β™―β€˜π‘€) ↔ (β™―β€˜π‘€) = 0)
21 hasheq0 14263 . . . . . . . . . . . . . 14 (𝑀 ∈ Word π‘Œ β†’ ((β™―β€˜π‘€) = 0 ↔ 𝑀 = βˆ…))
2220, 21bitrid 282 . . . . . . . . . . . . 13 (𝑀 ∈ Word π‘Œ β†’ (0 = (β™―β€˜π‘€) ↔ 𝑀 = βˆ…))
23 hasheq0 14263 . . . . . . . . . . . . . . 15 (π‘₯ ∈ Word 𝑋 β†’ ((β™―β€˜π‘₯) = 0 ↔ π‘₯ = βˆ…))
24 wrd2ind.6 . . . . . . . . . . . . . . . . 17 πœ“
25 wrd2ind.1 . . . . . . . . . . . . . . . . 17 ((π‘₯ = βˆ… ∧ 𝑀 = βˆ…) β†’ (πœ‘ ↔ πœ“))
2624, 25mpbiri 257 . . . . . . . . . . . . . . . 16 ((π‘₯ = βˆ… ∧ 𝑀 = βˆ…) β†’ πœ‘)
2726ex 413 . . . . . . . . . . . . . . 15 (π‘₯ = βˆ… β†’ (𝑀 = βˆ… β†’ πœ‘))
2823, 27syl6bi 252 . . . . . . . . . . . . . 14 (π‘₯ ∈ Word 𝑋 β†’ ((β™―β€˜π‘₯) = 0 β†’ (𝑀 = βˆ… β†’ πœ‘)))
2928com13 88 . . . . . . . . . . . . 13 (𝑀 = βˆ… β†’ ((β™―β€˜π‘₯) = 0 β†’ (π‘₯ ∈ Word 𝑋 β†’ πœ‘)))
3022, 29syl6bi 252 . . . . . . . . . . . 12 (𝑀 ∈ Word π‘Œ β†’ (0 = (β™―β€˜π‘€) β†’ ((β™―β€˜π‘₯) = 0 β†’ (π‘₯ ∈ Word 𝑋 β†’ πœ‘))))
3130com24 95 . . . . . . . . . . 11 (𝑀 ∈ Word π‘Œ β†’ (π‘₯ ∈ Word 𝑋 β†’ ((β™―β€˜π‘₯) = 0 β†’ (0 = (β™―β€˜π‘€) β†’ πœ‘))))
3231imp31 418 . . . . . . . . . 10 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ (β™―β€˜π‘₯) = 0) β†’ (0 = (β™―β€˜π‘€) β†’ πœ‘))
3319, 32sylbid 239 . . . . . . . . 9 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ (β™―β€˜π‘₯) = 0) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) β†’ πœ‘))
3433ex 413 . . . . . . . 8 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ ((β™―β€˜π‘₯) = 0 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) β†’ πœ‘)))
3534impcomd 412 . . . . . . 7 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 0) β†’ πœ‘))
3635rgen2 3194 . . . . . 6 βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = 0) β†’ πœ‘)
37 fveq2 6842 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))
38 fveq2 6842 . . . . . . . . . . . . 13 (𝑀 = 𝑒 β†’ (β™―β€˜π‘€) = (β™―β€˜π‘’))
3937, 38eqeqan12d 2750 . . . . . . . . . . . 12 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ↔ (β™―β€˜π‘¦) = (β™―β€˜π‘’)))
40 fveqeq2 6851 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ((β™―β€˜π‘₯) = π‘š ↔ (β™―β€˜π‘¦) = π‘š))
4140adantr 481 . . . . . . . . . . . 12 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ ((β™―β€˜π‘₯) = π‘š ↔ (β™―β€˜π‘¦) = π‘š))
4239, 41anbi12d 631 . . . . . . . . . . 11 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) ↔ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š)))
43 wrd2ind.2 . . . . . . . . . . 11 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ (πœ‘ ↔ πœ’))
4442, 43imbi12d 344 . . . . . . . . . 10 ((π‘₯ = 𝑦 ∧ 𝑀 = 𝑒) β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘) ↔ (((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)))
4544ancoms 459 . . . . . . . . 9 ((𝑀 = 𝑒 ∧ π‘₯ = 𝑦) β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘) ↔ (((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)))
4645cbvraldva 3326 . . . . . . . 8 (𝑀 = 𝑒 β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘) ↔ βˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)))
4746cbvralvw 3225 . . . . . . 7 (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘) ↔ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’))
48 pfxcl 14565 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ Word π‘Œ β†’ (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ)
4948adantr 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ)
5049ad2antrl 726 . . . . . . . . . . . . . . 15 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ)
51 simprll 777 . . . . . . . . . . . . . . . 16 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 ∈ Word π‘Œ)
52 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘₯) = (π‘š + 1) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ↔ (π‘š + 1) = (β™―β€˜π‘€)))
53 nn0p1nn 12452 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘š ∈ β„•0 β†’ (π‘š + 1) ∈ β„•)
54 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘€) = (π‘š + 1) β†’ ((β™―β€˜π‘€) ∈ β„• ↔ (π‘š + 1) ∈ β„•))
5554eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘š + 1) = (β™―β€˜π‘€) β†’ ((β™―β€˜π‘€) ∈ β„• ↔ (π‘š + 1) ∈ β„•))
5653, 55syl5ibr 245 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘š + 1) = (β™―β€˜π‘€) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘€) ∈ β„•))
5752, 56syl6bi 252 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘₯) = (π‘š + 1) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘€) ∈ β„•)))
5857impcom 408 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘€) ∈ β„•))
5958adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1))) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘€) ∈ β„•))
6059impcom 408 . . . . . . . . . . . . . . . . . 18 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘€) ∈ β„•)
6160nnge1d 12201 . . . . . . . . . . . . . . . . 17 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 1 ≀ (β™―β€˜π‘€))
62 wrdlenge1n0 14438 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ Word π‘Œ β†’ (𝑀 β‰  βˆ… ↔ 1 ≀ (β™―β€˜π‘€)))
6351, 62syl 17 . . . . . . . . . . . . . . . . 17 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (𝑀 β‰  βˆ… ↔ 1 ≀ (β™―β€˜π‘€)))
6461, 63mpbird 256 . . . . . . . . . . . . . . . 16 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 β‰  βˆ…)
65 lswcl 14456 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word π‘Œ ∧ 𝑀 β‰  βˆ…) β†’ (lastSβ€˜π‘€) ∈ π‘Œ)
6651, 64, 65syl2anc 584 . . . . . . . . . . . . . . 15 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (lastSβ€˜π‘€) ∈ π‘Œ)
6750, 66jca 512 . . . . . . . . . . . . . 14 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ ∧ (lastSβ€˜π‘€) ∈ π‘Œ))
68 pfxcl 14565 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ Word 𝑋 β†’ (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋)
6968adantl 482 . . . . . . . . . . . . . . 15 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋)
7069ad2antrl 726 . . . . . . . . . . . . . 14 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋)
71 simprlr 778 . . . . . . . . . . . . . . 15 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ ∈ Word 𝑋)
72 eleq1 2825 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘₯) = (π‘š + 1) β†’ ((β™―β€˜π‘₯) ∈ β„• ↔ (π‘š + 1) ∈ β„•))
7353, 72syl5ibr 245 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘₯) = (π‘š + 1) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘₯) ∈ β„•))
7473ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1))) β†’ (π‘š ∈ β„•0 β†’ (β™―β€˜π‘₯) ∈ β„•))
7574impcom 408 . . . . . . . . . . . . . . . . 17 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘₯) ∈ β„•)
7675nnge1d 12201 . . . . . . . . . . . . . . . 16 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 1 ≀ (β™―β€˜π‘₯))
77 wrdlenge1n0 14438 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ Word 𝑋 β†’ (π‘₯ β‰  βˆ… ↔ 1 ≀ (β™―β€˜π‘₯)))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (π‘₯ β‰  βˆ… ↔ 1 ≀ (β™―β€˜π‘₯)))
7976, 78mpbird 256 . . . . . . . . . . . . . . 15 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ β‰  βˆ…)
80 lswcl 14456 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ Word 𝑋 ∧ π‘₯ β‰  βˆ…) β†’ (lastSβ€˜π‘₯) ∈ 𝑋)
8171, 79, 80syl2anc 584 . . . . . . . . . . . . . 14 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (lastSβ€˜π‘₯) ∈ 𝑋)
8267, 70, 81jca32 516 . . . . . . . . . . . . 13 ((π‘š ∈ β„•0 ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ ∧ (lastSβ€˜π‘€) ∈ π‘Œ) ∧ ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋 ∧ (lastSβ€˜π‘₯) ∈ 𝑋)))
8382adantlr 713 . . . . . . . . . . . 12 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ ∧ (lastSβ€˜π‘€) ∈ π‘Œ) ∧ ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋 ∧ (lastSβ€˜π‘₯) ∈ 𝑋)))
84 simprl 769 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋))
85 simplr 767 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’))
86 simprrl 779 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘€))
8786oveq1d 7372 . . . . . . . . . . . . . . . 16 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘₯) βˆ’ 1) = ((β™―β€˜π‘€) βˆ’ 1))
88 simprlr 778 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ ∈ Word 𝑋)
89 fzossfz 13591 . . . . . . . . . . . . . . . . . 18 (0..^(β™―β€˜π‘₯)) βŠ† (0...(β™―β€˜π‘₯))
90 simprrr 780 . . . . . . . . . . . . . . . . . . . 20 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘₯) = (π‘š + 1))
9153ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (π‘š + 1) ∈ β„•)
9290, 91eqeltrd 2837 . . . . . . . . . . . . . . . . . . 19 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘₯) ∈ β„•)
93 fzo0end 13664 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘₯) ∈ β„• β†’ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0..^(β™―β€˜π‘₯)))
9492, 93syl 17 . . . . . . . . . . . . . . . . . 18 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0..^(β™―β€˜π‘₯)))
9589, 94sselid 3942 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯)))
96 pfxlen 14571 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ Word 𝑋 ∧ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯))) β†’ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = ((β™―β€˜π‘₯) βˆ’ 1))
9788, 95, 96syl2anc 584 . . . . . . . . . . . . . . . 16 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = ((β™―β€˜π‘₯) βˆ’ 1))
98 simprll 777 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 ∈ Word π‘Œ)
99 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘€) = (β™―β€˜π‘₯) β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((β™―β€˜π‘₯) βˆ’ 1))
100 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘€) = (β™―β€˜π‘₯) β†’ (0...(β™―β€˜π‘€)) = (0...(β™―β€˜π‘₯)))
10199, 100eleq12d 2831 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘€) = (β™―β€˜π‘₯) β†’ (((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€)) ↔ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯))))
102101eqcoms 2744 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘₯) = (β™―β€˜π‘€) β†’ (((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€)) ↔ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯))))
103102adantr 481 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ (((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€)) ↔ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯))))
104103ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€)) ↔ ((β™―β€˜π‘₯) βˆ’ 1) ∈ (0...(β™―β€˜π‘₯))))
10595, 104mpbird 256 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€)))
106 pfxlen 14571 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ Word π‘Œ ∧ ((β™―β€˜π‘€) βˆ’ 1) ∈ (0...(β™―β€˜π‘€))) β†’ (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) = ((β™―β€˜π‘€) βˆ’ 1))
10798, 105, 106syl2anc 584 . . . . . . . . . . . . . . . 16 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) = ((β™―β€˜π‘€) βˆ’ 1))
10887, 97, 1073eqtr4d 2786 . . . . . . . . . . . . . . 15 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))
10990oveq1d 7372 . . . . . . . . . . . . . . . 16 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘₯) βˆ’ 1) = ((π‘š + 1) βˆ’ 1))
110 nn0cn 12423 . . . . . . . . . . . . . . . . . 18 (π‘š ∈ β„•0 β†’ π‘š ∈ β„‚)
111110ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘š ∈ β„‚)
112 ax-1cn 11109 . . . . . . . . . . . . . . . . 17 1 ∈ β„‚
113 pncan 11407 . . . . . . . . . . . . . . . . 17 ((π‘š ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((π‘š + 1) βˆ’ 1) = π‘š)
114111, 112, 113sylancl 586 . . . . . . . . . . . . . . . 16 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((π‘š + 1) βˆ’ 1) = π‘š)
11597, 109, 1143eqtrd 2780 . . . . . . . . . . . . . . 15 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š)
116108, 115jca 512 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š))
11769adantr 481 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) β†’ (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋)
118 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ (β™―β€˜π‘¦) = (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))))
119 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ (β™―β€˜π‘’) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))
120118, 119eqeqan12d 2750 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))))
121120expcom 414 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))))
122121adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) β†’ (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))))
123122imp 407 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))))
124 fveqeq2 6851 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ((β™―β€˜π‘¦) = π‘š ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š))
125124adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ ((β™―β€˜π‘¦) = π‘š ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š))
126123, 125anbi12d 631 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ (((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) ↔ ((β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š)))
127 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
128 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑒 ∈ V
129127, 128, 43sbc2ie 3822 . . . . . . . . . . . . . . . . . . . 20 ([𝑦 / π‘₯][𝑒 / 𝑀]πœ‘ ↔ πœ’)
130129bicomi 223 . . . . . . . . . . . . . . . . . . 19 (πœ’ ↔ [𝑦 / π‘₯][𝑒 / 𝑀]πœ‘)
131130a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ (πœ’ ↔ [𝑦 / π‘₯][𝑒 / 𝑀]πœ‘))
132 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)))
133132sbceq1d 3744 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ ([𝑦 / π‘₯][𝑒 / 𝑀]πœ‘ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][𝑒 / 𝑀]πœ‘))
134 dfsbcq 3741 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ([𝑒 / 𝑀]πœ‘ ↔ [(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
135134sbcbidv 3798 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][𝑒 / 𝑀]πœ‘ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
136135adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) β†’ ([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][𝑒 / 𝑀]πœ‘ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
137136adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ ([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][𝑒 / 𝑀]πœ‘ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
138131, 133, 1373bitrd 304 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ (πœ’ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
139126, 138imbi12d 344 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ 𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) β†’ ((((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’) ↔ (((β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š) β†’ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘)))
140117, 139rspcdv 3573 . . . . . . . . . . . . . . 15 (((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ 𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) β†’ (βˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’) β†’ (((β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š) β†’ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘)))
14149, 140rspcimdv 3571 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ (βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’) β†’ (((β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = π‘š) β†’ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘)))
14284, 85, 116, 141syl3c 66 . . . . . . . . . . . . 13 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘)
143142, 108jca 512 . . . . . . . . . . . 12 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))))
144 dfsbcq 3741 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ↔ [(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀][𝑦 / π‘₯]πœ‘))
145 sbccom 3827 . . . . . . . . . . . . . . . 16 ([(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀][𝑦 / π‘₯]πœ‘ ↔ [𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘)
146144, 145bitrdi 286 . . . . . . . . . . . . . . 15 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ↔ [𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
147119eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) ↔ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))))
148146, 147anbi12d 631 . . . . . . . . . . . . . 14 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ (([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) ↔ ([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))))
149 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ (𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©))
150149sbceq1d 3744 . . . . . . . . . . . . . 14 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ([(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘ ↔ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘))
151148, 150imbi12d 344 . . . . . . . . . . . . 13 (𝑒 = (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) β†’ ((([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ [(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘) ↔ (([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘)))
152 s1eq 14488 . . . . . . . . . . . . . . . . 17 (𝑠 = (lastSβ€˜π‘€) β†’ βŸ¨β€œπ‘ β€βŸ© = βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©)
153152oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑠 = (lastSβ€˜π‘€) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
154153sbceq1d 3744 . . . . . . . . . . . . . . 15 (𝑠 = (lastSβ€˜π‘€) β†’ ([((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘ ↔ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘))
155154imbi2d 340 . . . . . . . . . . . . . 14 (𝑠 = (lastSβ€˜π‘€) β†’ ((([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘) ↔ (([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘)))
156 sbccom 3827 . . . . . . . . . . . . . . . 16 ([((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘ ↔ [(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)
157156a1i 11 . . . . . . . . . . . . . . 15 (𝑠 = (lastSβ€˜π‘€) β†’ ([((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘ ↔ [(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
158157imbi2d 340 . . . . . . . . . . . . . 14 (𝑠 = (lastSβ€˜π‘€) β†’ ((([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘) ↔ (([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)))
159155, 158bitrd 278 . . . . . . . . . . . . 13 (𝑠 = (lastSβ€˜π‘€) β†’ ((([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘) ↔ (([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)))
160 dfsbcq 3741 . . . . . . . . . . . . . . 15 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ↔ [(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘))
161 fveqeq2 6851 . . . . . . . . . . . . . . 15 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))) ↔ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))))
162160, 161anbi12d 631 . . . . . . . . . . . . . 14 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ (([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) ↔ ([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1))))))
163 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ (𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©))
164163sbceq1d 3744 . . . . . . . . . . . . . 14 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ([(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘ ↔ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
165162, 164imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = (π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) β†’ ((([𝑦 / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘) ↔ (([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)))
166 s1eq 14488 . . . . . . . . . . . . . . . 16 (𝑧 = (lastSβ€˜π‘₯) β†’ βŸ¨β€œπ‘§β€βŸ© = βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©)
167166oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑧 = (lastSβ€˜π‘₯) β†’ ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©) = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©))
168167sbceq1d 3744 . . . . . . . . . . . . . 14 (𝑧 = (lastSβ€˜π‘₯) β†’ ([((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘ ↔ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
169168imbi2d 340 . . . . . . . . . . . . 13 (𝑧 = (lastSβ€˜π‘₯) β†’ ((([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘) ↔ (([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)))
170 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋))
171 simpll 765 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ))
172 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (β™―β€˜π‘¦) = (β™―β€˜π‘’))
173 wrd2ind.7 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (πœ’ β†’ πœƒ))
174170, 171, 172, 173syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ (πœ’ β†’ πœƒ))
17543ancoms 459 . . . . . . . . . . . . . . . . 17 ((𝑀 = 𝑒 ∧ π‘₯ = 𝑦) β†’ (πœ‘ ↔ πœ’))
176128, 127, 175sbc2ie 3822 . . . . . . . . . . . . . . . 16 ([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ↔ πœ’)
177 ovex 7390 . . . . . . . . . . . . . . . . 17 (𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) ∈ V
178 ovex 7390 . . . . . . . . . . . . . . . . 17 (𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) ∈ V
179 wrd2ind.3 . . . . . . . . . . . . . . . . . 18 ((π‘₯ = (𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) ∧ 𝑀 = (𝑒 ++ βŸ¨β€œπ‘ β€βŸ©)) β†’ (πœ‘ ↔ πœƒ))
180179ancoms 459 . . . . . . . . . . . . . . . . 17 ((𝑀 = (𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) ∧ π‘₯ = (𝑦 ++ βŸ¨β€œπ‘§β€βŸ©)) β†’ (πœ‘ ↔ πœƒ))
181177, 178, 180sbc2ie 3822 . . . . . . . . . . . . . . . 16 ([(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘ ↔ πœƒ)
182174, 176, 1813imtr4g 295 . . . . . . . . . . . . . . 15 ((((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ ([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ β†’ [(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘))
183182ex 413 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘’) β†’ ([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ β†’ [(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘)))
184183impcomd 412 . . . . . . . . . . . . 13 (((𝑒 ∈ Word π‘Œ ∧ 𝑠 ∈ π‘Œ) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (([𝑒 / 𝑀][𝑦 / π‘₯]πœ‘ ∧ (β™―β€˜π‘¦) = (β™―β€˜π‘’)) β†’ [(𝑒 ++ βŸ¨β€œπ‘ β€βŸ©) / 𝑀][(𝑦 ++ βŸ¨β€œπ‘§β€βŸ©) / π‘₯]πœ‘))
185151, 159, 165, 169, 184vtocl4ga 3541 . . . . . . . . . . . 12 ((((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ∈ Word π‘Œ ∧ (lastSβ€˜π‘€) ∈ π‘Œ) ∧ ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ∈ Word 𝑋 ∧ (lastSβ€˜π‘₯) ∈ 𝑋)) β†’ (([(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) / π‘₯][(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) / 𝑀]πœ‘ ∧ (β™―β€˜(π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1))) = (β™―β€˜(𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)))) β†’ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
18683, 143, 185sylc 65 . . . . . . . . . . 11 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘)
187 eqtr2 2760 . . . . . . . . . . . . . . . 16 (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ (β™―β€˜π‘€) = (π‘š + 1))
188187ad2antll 727 . . . . . . . . . . . . . . 15 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘€) = (π‘š + 1))
189188, 91eqeltrd 2837 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (β™―β€˜π‘€) ∈ β„•)
190 wrdfin 14420 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ Word π‘Œ β†’ 𝑀 ∈ Fin)
191190adantr 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ 𝑀 ∈ Fin)
192191ad2antrl 726 . . . . . . . . . . . . . . 15 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 ∈ Fin)
193 hashnncl 14266 . . . . . . . . . . . . . . 15 (𝑀 ∈ Fin β†’ ((β™―β€˜π‘€) ∈ β„• ↔ 𝑀 β‰  βˆ…))
194192, 193syl 17 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘€) ∈ β„• ↔ 𝑀 β‰  βˆ…))
195189, 194mpbid 231 . . . . . . . . . . . . 13 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 β‰  βˆ…)
196 pfxlswccat 14601 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word π‘Œ ∧ 𝑀 β‰  βˆ…) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
197196eqcomd 2742 . . . . . . . . . . . . 13 ((𝑀 ∈ Word π‘Œ ∧ 𝑀 β‰  βˆ…) β†’ 𝑀 = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
19898, 195, 197syl2anc 584 . . . . . . . . . . . 12 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ 𝑀 = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
199 wrdfin 14420 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ Word 𝑋 β†’ π‘₯ ∈ Fin)
200199adantl 482 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) β†’ π‘₯ ∈ Fin)
201200ad2antrl 726 . . . . . . . . . . . . . . 15 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ ∈ Fin)
202 hashnncl 14266 . . . . . . . . . . . . . . 15 (π‘₯ ∈ Fin β†’ ((β™―β€˜π‘₯) ∈ β„• ↔ π‘₯ β‰  βˆ…))
203201, 202syl 17 . . . . . . . . . . . . . 14 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ ((β™―β€˜π‘₯) ∈ β„• ↔ π‘₯ β‰  βˆ…))
20492, 203mpbid 231 . . . . . . . . . . . . 13 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ β‰  βˆ…)
205 pfxlswccat 14601 . . . . . . . . . . . . . 14 ((π‘₯ ∈ Word 𝑋 ∧ π‘₯ β‰  βˆ…) β†’ ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) = π‘₯)
206205eqcomd 2742 . . . . . . . . . . . . 13 ((π‘₯ ∈ Word 𝑋 ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©))
20788, 204, 206syl2anc 584 . . . . . . . . . . . 12 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ π‘₯ = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©))
208 sbceq1a 3750 . . . . . . . . . . . . 13 (𝑀 = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) β†’ (πœ‘ ↔ [((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
209 sbceq1a 3750 . . . . . . . . . . . . 13 (π‘₯ = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) β†’ ([((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘ ↔ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
210208, 209sylan9bb 510 . . . . . . . . . . . 12 ((𝑀 = ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) ∧ π‘₯ = ((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©)) β†’ (πœ‘ ↔ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
211198, 207, 210syl2anc 584 . . . . . . . . . . 11 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ (πœ‘ ↔ [((π‘₯ prefix ((β™―β€˜π‘₯) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘₯)β€βŸ©) / π‘₯][((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) / 𝑀]πœ‘))
212186, 211mpbird 256 . . . . . . . . . 10 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ ((𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋) ∧ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)))) β†’ πœ‘)
213212expr 457 . . . . . . . . 9 (((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) ∧ (𝑀 ∈ Word π‘Œ ∧ π‘₯ ∈ Word 𝑋)) β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘))
214213ralrimivva 3197 . . . . . . . 8 ((π‘š ∈ β„•0 ∧ βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’)) β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘))
215214ex 413 . . . . . . 7 (π‘š ∈ β„•0 β†’ (βˆ€π‘’ ∈ Word π‘Œβˆ€π‘¦ ∈ Word 𝑋(((β™―β€˜π‘¦) = (β™―β€˜π‘’) ∧ (β™―β€˜π‘¦) = π‘š) β†’ πœ’) β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘)))
21647, 215biimtrid 241 . . . . . 6 (π‘š ∈ β„•0 β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = π‘š) β†’ πœ‘) β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (π‘š + 1)) β†’ πœ‘)))
2175, 9, 13, 17, 36, 216nn0ind 12598 . . . . 5 ((β™―β€˜π΄) ∈ β„•0 β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘))
2181, 217syl 17 . . . 4 (𝐴 ∈ Word 𝑋 β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘))
2192183ad2ant1 1133 . . 3 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘))
220 fveq2 6842 . . . . . . . . 9 (𝑀 = 𝐡 β†’ (β™―β€˜π‘€) = (β™―β€˜π΅))
221220eqeq2d 2747 . . . . . . . 8 (𝑀 = 𝐡 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘€) ↔ (β™―β€˜π‘₯) = (β™―β€˜π΅)))
222221anbi1d 630 . . . . . . 7 (𝑀 = 𝐡 β†’ (((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) ↔ ((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄))))
223 wrd2ind.5 . . . . . . 7 (𝑀 = 𝐡 β†’ (πœ‘ ↔ 𝜌))
224222, 223imbi12d 344 . . . . . 6 (𝑀 = 𝐡 β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘) ↔ (((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌)))
225224ralbidv 3174 . . . . 5 (𝑀 = 𝐡 β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘) ↔ βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌)))
226225rspcv 3577 . . . 4 (𝐡 ∈ Word π‘Œ β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘) β†’ βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌)))
2272263ad2ant2 1134 . . 3 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ (βˆ€π‘€ ∈ Word π‘Œβˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π‘€) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ πœ‘) β†’ βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌)))
228219, 227mpd 15 . 2 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌))
229 eqidd 2737 . 2 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ (β™―β€˜π΄) = (β™―β€˜π΄))
230 fveqeq2 6851 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π΅) ↔ (β™―β€˜π΄) = (β™―β€˜π΅)))
231 fveqeq2 6851 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π΄) ↔ (β™―β€˜π΄) = (β™―β€˜π΄)))
232230, 231anbi12d 631 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ (((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) ↔ ((β™―β€˜π΄) = (β™―β€˜π΅) ∧ (β™―β€˜π΄) = (β™―β€˜π΄))))
233 wrd2ind.4 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ (𝜌 ↔ 𝜏))
234232, 233imbi12d 344 . . . . . . . 8 (π‘₯ = 𝐴 β†’ ((((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) ↔ (((β™―β€˜π΄) = (β™―β€˜π΅) ∧ (β™―β€˜π΄) = (β™―β€˜π΄)) β†’ 𝜏)))
235234rspcv 3577 . . . . . . 7 (𝐴 ∈ Word 𝑋 β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ (((β™―β€˜π΄) = (β™―β€˜π΅) ∧ (β™―β€˜π΄) = (β™―β€˜π΄)) β†’ 𝜏)))
236235com23 86 . . . . . 6 (𝐴 ∈ Word 𝑋 β†’ (((β™―β€˜π΄) = (β™―β€˜π΅) ∧ (β™―β€˜π΄) = (β™―β€˜π΄)) β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ 𝜏)))
237236expd 416 . . . . 5 (𝐴 ∈ Word 𝑋 β†’ ((β™―β€˜π΄) = (β™―β€˜π΅) β†’ ((β™―β€˜π΄) = (β™―β€˜π΄) β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ 𝜏))))
238237com34 91 . . . 4 (𝐴 ∈ Word 𝑋 β†’ ((β™―β€˜π΄) = (β™―β€˜π΅) β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ ((β™―β€˜π΄) = (β™―β€˜π΄) β†’ 𝜏))))
239238imp 407 . . 3 ((𝐴 ∈ Word 𝑋 ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ ((β™―β€˜π΄) = (β™―β€˜π΄) β†’ 𝜏)))
2402393adant2 1131 . 2 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ (βˆ€π‘₯ ∈ Word 𝑋(((β™―β€˜π‘₯) = (β™―β€˜π΅) ∧ (β™―β€˜π‘₯) = (β™―β€˜π΄)) β†’ 𝜌) β†’ ((β™―β€˜π΄) = (β™―β€˜π΄) β†’ 𝜏)))
241228, 229, 240mp2d 49 1 ((𝐴 ∈ Word 𝑋 ∧ 𝐡 ∈ Word π‘Œ ∧ (β™―β€˜π΄) = (β™―β€˜π΅)) β†’ 𝜏)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2943  βˆ€wral 3064  [wsbc 3739  βˆ…c0 4282   class class class wbr 5105  β€˜cfv 6496  (class class class)co 7357  Fincfn 8883  β„‚cc 11049  0cc0 11051  1c1 11052   + caddc 11054   ≀ cle 11190   βˆ’ cmin 11385  β„•cn 12153  β„•0cn0 12413  ...cfz 13424  ..^cfzo 13567  β™―chash 14230  Word cword 14402  lastSclsw 14450   ++ cconcat 14458  βŸ¨β€œcs1 14483   prefix cpfx 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559
This theorem is referenced by:  gsmsymgreq  19214
  Copyright terms: Public domain W3C validator