Step | Hyp | Ref
| Expression |
1 | | lencl 14236 |
. . . . 5
⊢ (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈
ℕ0) |
2 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑛 = 0 →
((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0)) |
3 | 2 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑛 = 0 →
(((♯‘𝑥) =
(♯‘𝑤) ∧
(♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0))) |
4 | 3 | imbi1d 342 |
. . . . . . 7
⊢ (𝑛 = 0 →
((((♯‘𝑥) =
(♯‘𝑤) ∧
(♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑))) |
5 | 4 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑛 = 0 → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑))) |
6 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚)) |
7 | 6 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚))) |
8 | 7 | imbi1d 342 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑))) |
9 | 8 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑))) |
10 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1))) |
11 | 10 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) |
12 | 11 | imbi1d 342 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))) |
13 | 12 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))) |
14 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴))) |
15 | 14 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)))) |
16 | 15 | imbi1d 342 |
. . . . . . 7
⊢ (𝑛 = (♯‘𝐴) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑))) |
17 | 16 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑛 = (♯‘𝐴) → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑))) |
18 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢
((♯‘𝑥) =
0 → ((♯‘𝑥)
= (♯‘𝑤) ↔
0 = (♯‘𝑤))) |
19 | 18 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → ((♯‘𝑥) = (♯‘𝑤) ↔ 0 =
(♯‘𝑤))) |
20 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (0 =
(♯‘𝑤) ↔
(♯‘𝑤) =
0) |
21 | | hasheq0 14078 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Word 𝑌 → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅)) |
22 | 20, 21 | bitrid 282 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ Word 𝑌 → (0 = (♯‘𝑤) ↔ 𝑤 = ∅)) |
23 | | hasheq0 14078 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) |
24 | | wrd2ind.6 |
. . . . . . . . . . . . . . . . 17
⊢ 𝜓 |
25 | | wrd2ind.1 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑 ↔ 𝜓)) |
26 | 24, 25 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = ∅ ∧ 𝑤 = ∅) → 𝜑) |
27 | 26 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → (𝑤 = ∅ → 𝜑)) |
28 | 23, 27 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 → (𝑤 = ∅ → 𝜑))) |
29 | 28 | com13 88 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ →
((♯‘𝑥) = 0
→ (𝑥 ∈ Word 𝑋 → 𝜑))) |
30 | 22, 29 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ Word 𝑌 → (0 = (♯‘𝑤) → ((♯‘𝑥) = 0 → (𝑥 ∈ Word 𝑋 → 𝜑)))) |
31 | 30 | com24 95 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ Word 𝑌 → (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 → (0 = (♯‘𝑤) → 𝜑)))) |
32 | 31 | imp31 418 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → (0 = (♯‘𝑤) → 𝜑)) |
33 | 19, 32 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → ((♯‘𝑥) = (♯‘𝑤) → 𝜑)) |
34 | 33 | ex 413 |
. . . . . . . 8
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → ((♯‘𝑥) = 0 → ((♯‘𝑥) = (♯‘𝑤) → 𝜑))) |
35 | 34 | impcomd 412 |
. . . . . . 7
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑)) |
36 | 35 | rgen2 3120 |
. . . . . 6
⊢
∀𝑤 ∈
Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑) |
37 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) |
38 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → (♯‘𝑤) = (♯‘𝑢)) |
39 | 37, 38 | eqeqan12d 2752 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → ((♯‘𝑥) = (♯‘𝑤) ↔ (♯‘𝑦) = (♯‘𝑢))) |
40 | | fveqeq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚)) |
41 | 40 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚)) |
42 | 39, 41 | anbi12d 631 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) ↔ ((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚))) |
43 | | wrd2ind.2 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → (𝜑 ↔ 𝜒)) |
44 | 42, 43 | imbi12d 345 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒))) |
45 | 44 | ancoms 459 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑢 ∧ 𝑥 = 𝑦) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒))) |
46 | 45 | cbvraldva 3394 |
. . . . . . . 8
⊢ (𝑤 = 𝑢 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ ∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒))) |
47 | 46 | cbvralvw 3383 |
. . . . . . 7
⊢
(∀𝑤 ∈
Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ ∀𝑢 ∈ Word 𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) |
48 | | pfxcl 14390 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ Word 𝑌 → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌) |
50 | 49 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌) |
51 | | simprll 776 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Word 𝑌) |
52 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑥) =
(𝑚 + 1) →
((♯‘𝑥) =
(♯‘𝑤) ↔
(𝑚 + 1) =
(♯‘𝑤))) |
53 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
54 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝑤) =
(𝑚 + 1) →
((♯‘𝑤) ∈
ℕ ↔ (𝑚 + 1)
∈ ℕ)) |
55 | 54 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) = (♯‘𝑤) → ((♯‘𝑤) ∈ ℕ ↔ (𝑚 + 1) ∈
ℕ)) |
56 | 53, 55 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 + 1) = (♯‘𝑤) → (𝑚 ∈ ℕ0 →
(♯‘𝑤) ∈
ℕ)) |
57 | 52, 56 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑥) =
(𝑚 + 1) →
((♯‘𝑥) =
(♯‘𝑤) →
(𝑚 ∈
ℕ0 → (♯‘𝑤) ∈ ℕ))) |
58 | 57 | impcom 408 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑥)
= (♯‘𝑤) ∧
(♯‘𝑥) = (𝑚 + 1)) → (𝑚 ∈ ℕ0
→ (♯‘𝑤)
∈ ℕ)) |
59 | 58 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 ∈ ℕ0 →
(♯‘𝑤) ∈
ℕ)) |
60 | 59 | impcom 408 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) ∈
ℕ) |
61 | 60 | nnge1d 12021 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 1 ≤ (♯‘𝑤)) |
62 | | wrdlenge1n0 14253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ Word 𝑌 → (𝑤 ≠ ∅ ↔ 1 ≤
(♯‘𝑤))) |
63 | 51, 62 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 ≠ ∅ ↔ 1 ≤
(♯‘𝑤))) |
64 | 61, 63 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ≠ ∅) |
65 | | lswcl 14271 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑌) |
66 | 51, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (lastS‘𝑤) ∈ 𝑌) |
67 | 50, 66 | jca 512 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌)) |
68 | | pfxcl 14390 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝑋 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋) |
69 | 68 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋) |
70 | 69 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋) |
71 | | simprlr 777 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Word 𝑋) |
72 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
(𝑚 + 1) →
((♯‘𝑥) ∈
ℕ ↔ (𝑚 + 1)
∈ ℕ)) |
73 | 53, 72 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑥) =
(𝑚 + 1) → (𝑚 ∈ ℕ0
→ (♯‘𝑥)
∈ ℕ)) |
74 | 73 | ad2antll 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 ∈ ℕ0 →
(♯‘𝑥) ∈
ℕ)) |
75 | 74 | impcom 408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) ∈
ℕ) |
76 | 75 | nnge1d 12021 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 1 ≤ (♯‘𝑥)) |
77 | | wrdlenge1n0 14253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Word 𝑋 → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
78 | 71, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
79 | 76, 78 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ≠ ∅) |
80 | | lswcl 14271 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Word 𝑋 ∧ 𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝑋) |
81 | 71, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (lastS‘𝑥) ∈ 𝑋) |
82 | 67, 70, 81 | jca32 516 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋))) |
83 | 82 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋))) |
84 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋)) |
85 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ∀𝑢 ∈ Word 𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) |
86 | | simprrl 778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) = (♯‘𝑤)) |
87 | 86 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) =
((♯‘𝑤) −
1)) |
88 | | simprlr 777 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Word 𝑋) |
89 | | fzossfz 13406 |
. . . . . . . . . . . . . . . . . 18
⊢
(0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥)) |
90 | | simprrr 779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) = (𝑚 + 1)) |
91 | 53 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑚 + 1) ∈ ℕ) |
92 | 90, 91 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) ∈
ℕ) |
93 | | fzo0end 13479 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑥)
∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) ∈
(0..^(♯‘𝑥))) |
95 | 89, 94 | sselid 3919 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) ∈
(0...(♯‘𝑥))) |
96 | | pfxlen 14396 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ Word 𝑋 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
97 | 88, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
98 | | simprll 776 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Word 𝑌) |
99 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑤) =
(♯‘𝑥) →
((♯‘𝑤) −
1) = ((♯‘𝑥)
− 1)) |
100 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑤) =
(♯‘𝑥) →
(0...(♯‘𝑤)) =
(0...(♯‘𝑥))) |
101 | 99, 100 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑤) =
(♯‘𝑥) →
(((♯‘𝑤) −
1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))) |
102 | 101 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
(♯‘𝑤) →
(((♯‘𝑤) −
1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))) |
103 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑥)
= (♯‘𝑤) ∧
(♯‘𝑥) = (𝑚 + 1)) →
(((♯‘𝑤) −
1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))) |
104 | 103 | ad2antll 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((♯‘𝑤) − 1) ∈
(0...(♯‘𝑤))
↔ ((♯‘𝑥)
− 1) ∈ (0...(♯‘𝑥)))) |
105 | 95, 104 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑤) − 1) ∈
(0...(♯‘𝑤))) |
106 | | pfxlen 14396 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ Word 𝑌 ∧ ((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤))) → (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) =
((♯‘𝑤) −
1)) |
107 | 98, 105, 106 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) =
((♯‘𝑤) −
1)) |
108 | 87, 97, 107 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1)))) |
109 | 90 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) −
1)) |
110 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
111 | 110 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑚 ∈ ℂ) |
112 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
113 | | pncan 11227 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
114 | 111, 112,
113 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((𝑚 + 1) − 1) = 𝑚) |
115 | 97, 109, 114 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) |
116 | 108, 115 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) |
117 | 69 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋) |
118 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (♯‘𝑦) = (♯‘(𝑥 prefix ((♯‘𝑥) − 1)))) |
119 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (♯‘𝑢) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) |
120 | 118, 119 | eqeqan12d 2752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))))) |
121 | 120 | expcom 414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1)))))) |
122 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1)))))) |
123 | 122 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))))) |
124 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) |
125 | 124 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) |
126 | 123, 125 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧
(♯‘(𝑥 prefix
((♯‘𝑥) −
1))) = 𝑚))) |
127 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
128 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑢 ∈ V |
129 | 127, 128,
43 | sbc2ie 3799 |
. . . . . . . . . . . . . . . . . . . 20
⊢
([𝑦 / 𝑥][𝑢 / 𝑤]𝜑 ↔ 𝜒) |
130 | 129 | bicomi 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 ↔ [𝑦 / 𝑥][𝑢 / 𝑤]𝜑) |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (𝜒 ↔ [𝑦 / 𝑥][𝑢 / 𝑤]𝜑)) |
132 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) |
133 | 132 | sbceq1d 3721 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ([𝑦 / 𝑥][𝑢 / 𝑤]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑)) |
134 | | dfsbcq 3718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤]𝜑 ↔ [(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
135 | 134 | sbcbidv 3775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
136 | 135 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
138 | 131, 133,
137 | 3bitrd 305 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (𝜒 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
139 | 126, 138 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) ↔ (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))) |
140 | 117, 139 | rspcdv 3553 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))) |
141 | 49, 140 | rspcimdv 3551 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → (∀𝑢 ∈ Word 𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
(♯‘(𝑤 prefix
((♯‘𝑤) −
1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))) |
142 | 84, 85, 116, 141 | syl3c 66 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑) |
143 | 142, 108 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) −
1))))) |
144 | | dfsbcq 3718 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ↔ [(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤][𝑦 / 𝑥]𝜑)) |
145 | | sbccom 3804 |
. . . . . . . . . . . . . . . 16
⊢
([(𝑤 prefix
((♯‘𝑤) −
1)) / 𝑤][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑) |
146 | 144, 145 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
147 | 119 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) −
1))))) |
148 | 146, 147 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) ↔ ([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))) |
149 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (𝑢 ++ 〈“𝑠”〉) = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ 〈“𝑠”〉)) |
150 | 149 | sbceq1d 3721 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([(𝑢 ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑤 prefix ((♯‘𝑤) − 1)) ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
151 | 148, 150 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ((([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) → [(𝑢 ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑))) |
152 | | s1eq 14305 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (lastS‘𝑤) → 〈“𝑠”〉 =
〈“(lastS‘𝑤)”〉) |
153 | 152 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (lastS‘𝑤) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ 〈“𝑠”〉) = ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉)) |
154 | 153 | sbceq1d 3721 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (lastS‘𝑤) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
155 | 154 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑))) |
156 | | sbccom 3804 |
. . . . . . . . . . . . . . . 16
⊢
([((𝑤 prefix
((♯‘𝑤) −
1)) ++ 〈“(lastS‘𝑤)”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑) |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (lastS‘𝑤) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
158 | 157 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑))) |
159 | 155, 158 | bitrd 278 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑))) |
160 | | dfsbcq 3718 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)) |
161 | | fveqeq2 6783 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ↔
(♯‘(𝑥 prefix
((♯‘𝑥) −
1))) = (♯‘(𝑤
prefix ((♯‘𝑤)
− 1))))) |
162 | 160, 161 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) −
1)))))) |
163 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉)) |
164 | 163 | sbceq1d 3721 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
165 | 162, 164 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑) ↔ (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) →
[((𝑥 prefix
((♯‘𝑥) −
1)) ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑))) |
166 | | s1eq 14305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (lastS‘𝑥) → 〈“𝑧”〉 =
〈“(lastS‘𝑥)”〉) |
167 | 166 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
168 | 167 | sbceq1d 3721 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
169 | 168 | imbi2d 341 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (lastS‘𝑥) → ((([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) →
[((𝑥 prefix
((♯‘𝑥) −
1)) ++ 〈“𝑧”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑) ↔ (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) →
[((𝑥 prefix
((♯‘𝑥) −
1)) ++ 〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑))) |
170 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) |
171 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌)) |
172 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (♯‘𝑦) = (♯‘𝑢)) |
173 | | wrd2ind.7 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒 → 𝜃)) |
174 | 170, 171,
172, 173 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒 → 𝜃)) |
175 | 43 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = 𝑢 ∧ 𝑥 = 𝑦) → (𝜑 ↔ 𝜒)) |
176 | 128, 127,
175 | sbc2ie 3799 |
. . . . . . . . . . . . . . . 16
⊢
([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ↔ 𝜒) |
177 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ++ 〈“𝑠”〉) ∈
V |
178 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ++ 〈“𝑧”〉) ∈
V |
179 | | wrd2ind.3 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = (𝑦 ++ 〈“𝑧”〉) ∧ 𝑤 = (𝑢 ++ 〈“𝑠”〉)) → (𝜑 ↔ 𝜃)) |
180 | 179 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = (𝑢 ++ 〈“𝑠”〉) ∧ 𝑥 = (𝑦 ++ 〈“𝑧”〉)) → (𝜑 ↔ 𝜃)) |
181 | 177, 178,
180 | sbc2ie 3799 |
. . . . . . . . . . . . . . . 16
⊢
([(𝑢 ++
〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ 𝜃) |
182 | 174, 176,
181 | 3imtr4g 296 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 → [(𝑢 ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
183 | 182 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((♯‘𝑦) = (♯‘𝑢) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 → [(𝑢 ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑))) |
184 | 183 | impcomd 412 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋)) → (([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) → [(𝑢 ++ 〈“𝑠”〉) / 𝑤][(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
185 | 151, 159,
165, 169, 184 | vtocl4ga 3520 |
. . . . . . . . . . . 12
⊢ ((((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋)) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) →
[((𝑥 prefix
((♯‘𝑥) −
1)) ++ 〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
186 | 83, 143, 185 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑) |
187 | | eqtr2 2762 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑥)
= (♯‘𝑤) ∧
(♯‘𝑥) = (𝑚 + 1)) →
(♯‘𝑤) = (𝑚 + 1)) |
188 | 187 | ad2antll 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) = (𝑚 + 1)) |
189 | 188, 91 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) ∈
ℕ) |
190 | | wrdfin 14235 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ Word 𝑌 → 𝑤 ∈ Fin) |
191 | 190 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → 𝑤 ∈ Fin) |
192 | 191 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Fin) |
193 | | hashnncl 14081 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ Fin →
((♯‘𝑤) ∈
ℕ ↔ 𝑤 ≠
∅)) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅)) |
195 | 189, 194 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ≠ ∅) |
196 | | pfxlswccat 14426 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = 𝑤) |
197 | 196 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑤 ≠ ∅) → 𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉)) |
198 | 98, 195, 197 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉)) |
199 | | wrdfin 14235 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Word 𝑋 → 𝑥 ∈ Fin) |
200 | 199 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) → 𝑥 ∈ Fin) |
201 | 200 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Fin) |
202 | | hashnncl 14081 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Fin →
((♯‘𝑥) ∈
ℕ ↔ 𝑥 ≠
∅)) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
204 | 92, 203 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ≠ ∅) |
205 | | pfxlswccat 14426 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Word 𝑋 ∧ 𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) = 𝑥) |
206 | 205 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝑋 ∧ 𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
207 | 88, 204, 206 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
208 | | sbceq1a 3727 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) → (𝜑 ↔ [((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
209 | | sbceq1a 3727 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
210 | 208, 209 | sylan9bb 510 |
. . . . . . . . . . . 12
⊢ ((𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) ∧ 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
211 | 198, 207,
210 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) / 𝑤]𝜑)) |
212 | 186, 211 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝜑) |
213 | 212 | expr 457 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ (𝑤 ∈ Word 𝑌 ∧ 𝑥 ∈ Word 𝑋)) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)) |
214 | 213 | ralrimivva 3123 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ ∀𝑢 ∈ Word
𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)) |
215 | 214 | ex 413 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (∀𝑢 ∈
Word 𝑌∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))) |
216 | 47, 215 | syl5bi 241 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ (∀𝑤 ∈
Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))) |
217 | 5, 9, 13, 17, 36, 216 | nn0ind 12415 |
. . . . 5
⊢
((♯‘𝐴)
∈ ℕ0 → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑)) |
218 | 1, 217 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Word 𝑋 → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑)) |
219 | 218 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → ∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑)) |
220 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑤 = 𝐵 → (♯‘𝑤) = (♯‘𝐵)) |
221 | 220 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → ((♯‘𝑥) = (♯‘𝑤) ↔ (♯‘𝑥) = (♯‘𝐵))) |
222 | 221 | anbi1d 630 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) ↔ ((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)))) |
223 | | wrd2ind.5 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝜑 ↔ 𝜌)) |
224 | 222, 223 | imbi12d 345 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌))) |
225 | 224 | ralbidv 3112 |
. . . . 5
⊢ (𝑤 = 𝐵 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) ↔ ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌))) |
226 | 225 | rspcv 3557 |
. . . 4
⊢ (𝐵 ∈ Word 𝑌 → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌))) |
227 | 226 | 3ad2ant2 1133 |
. . 3
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑤 ∈ Word 𝑌∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌))) |
228 | 219, 227 | mpd 15 |
. 2
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌)) |
229 | | eqidd 2739 |
. 2
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐴)) |
230 | | fveqeq2 6783 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐵) ↔ (♯‘𝐴) = (♯‘𝐵))) |
231 | | fveqeq2 6783 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴))) |
232 | 230, 231 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) ↔ ((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)))) |
233 | | wrd2ind.4 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝜌 ↔ 𝜏)) |
234 | 232, 233 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) ↔ (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → 𝜏))) |
235 | 234 | rspcv 3557 |
. . . . . . 7
⊢ (𝐴 ∈ Word 𝑋 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → 𝜏))) |
236 | 235 | com23 86 |
. . . . . 6
⊢ (𝐴 ∈ Word 𝑋 → (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → 𝜏))) |
237 | 236 | expd 416 |
. . . . 5
⊢ (𝐴 ∈ Word 𝑋 → ((♯‘𝐴) = (♯‘𝐵) → ((♯‘𝐴) = (♯‘𝐴) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → 𝜏)))) |
238 | 237 | com34 91 |
. . . 4
⊢ (𝐴 ∈ Word 𝑋 → ((♯‘𝐴) = (♯‘𝐵) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))) |
239 | 238 | imp 407 |
. . 3
⊢ ((𝐴 ∈ Word 𝑋 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
240 | 239 | 3adant2 1130 |
. 2
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
241 | 228, 229,
240 | mp2d 49 |
1
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏) |