MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclALT Structured version   Visualization version   GIF version

Theorem vtoclALT 3544
Description: Alternate proof of vtocl 3536. Shorter but requires more axioms. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtoclALT.1 𝐴 ∈ V
vtoclALT.2 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclALT.3 𝜑
Assertion
Ref Expression
vtoclALT 𝜓
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclALT
StepHypRef Expression
1 nfv 1909 . 2 𝑥𝜓
2 vtoclALT.1 . 2 𝐴 ∈ V
3 vtoclALT.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
4 vtoclALT.3 . 2 𝜑
51, 2, 3, 4vtoclf 3542 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-nf 1778  df-clel 2802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator