MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3487
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2395. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3 𝑥𝜓
2 vtoclf.2 . . . . 5 𝐴 ∈ V
32isseti 3437 . . . 4 𝑥 𝑥 = 𝐴
4 vtoclf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 228 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
63, 5eximii 1840 . . 3 𝑥(𝜑𝜓)
71, 619.36i 2227 . 2 (∀𝑥𝜑𝜓)
8 vtoclf.4 . 2 𝜑
97, 8mpg 1801 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wnf 1787  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-clel 2817
This theorem is referenced by:  vtoclALT  3489  summolem2a  15355  prodmolem2a  15572  poimirlem24  35728  poimirlem28  35732  monotuz  40679  oddcomabszz  40682  binomcxplemnotnn0  41863  limclner  43082  climinf2mpt  43145  climinfmpt  43146  dvnmptdivc  43369  dvnmul  43374  salpreimagtge  44148  salpreimaltle  44149
  Copyright terms: Public domain W3C validator