![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2417. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclf | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | isseti 3427 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 221 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 3, 5 | eximii 1937 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
7 | 1, 6 | 19.36i 2276 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
9 | 7, 8 | mpg 1898 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 Ⅎwnf 1884 ∈ wcel 2166 Vcvv 3415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-v 3417 |
This theorem is referenced by: vtoclALT 3477 summolem2a 14824 prodmolem2a 15038 poimirlem24 33978 poimirlem28 33982 monotuz 38350 oddcomabszz 38353 binomcxplemnotnn0 39396 limclner 40679 climinf2mpt 40742 climinfmpt 40743 dvnmptdivc 40949 dvnmul 40954 salpreimagtge 41729 salpreimaltle 41730 |
Copyright terms: Public domain | W3C validator |