![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2398. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclf | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . 2 ⊢ 𝐴 ∈ V | |
3 | vtoclf.4 | . . 3 ⊢ 𝜑 | |
4 | vtoclf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 1, 2, 5 | vtoclef 3563 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-clel 2814 |
This theorem is referenced by: summolem2a 15748 prodmolem2a 15967 poimirlem24 37631 poimirlem28 37635 monotuz 42930 oddcomabszz 42933 binomcxplemnotnn0 44352 limclner 45607 climinf2mpt 45670 climinfmpt 45671 dvnmptdivc 45894 dvnmul 45899 salpreimagtge 46681 salpreimaltle 46682 |
Copyright terms: Public domain | W3C validator |