MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3519
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2394. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . 2 𝑥𝜓
2 vtoclf.2 . 2 𝐴 ∈ V
3 vtoclf.4 . . 3 𝜑
4 vtoclf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 232 . 2 (𝑥 = 𝐴𝜓)
61, 2, 5vtoclef 3518 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wnf 1786  wcel 2107  Vcvv 3448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787  df-clel 2815
This theorem is referenced by:  vtoclALT  3522  summolem2a  15607  prodmolem2a  15824  poimirlem24  36131  poimirlem28  36135  monotuz  41294  oddcomabszz  41297  binomcxplemnotnn0  42710  limclner  43966  climinf2mpt  44029  climinfmpt  44030  dvnmptdivc  44253  dvnmul  44258  salpreimagtge  45040  salpreimaltle  45041
  Copyright terms: Public domain W3C validator