MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3475
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2417. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3 𝑥𝜓
2 vtoclf.2 . . . . 5 𝐴 ∈ V
32isseti 3427 . . . 4 𝑥 𝑥 = 𝐴
4 vtoclf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 221 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
63, 5eximii 1937 . . 3 𝑥(𝜑𝜓)
71, 619.36i 2276 . 2 (∀𝑥𝜑𝜓)
8 vtoclf.4 . 2 𝜑
97, 8mpg 1898 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wnf 1884  wcel 2166  Vcvv 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-12 2222  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-v 3417
This theorem is referenced by:  vtoclALT  3477  summolem2a  14824  prodmolem2a  15038  poimirlem24  33978  poimirlem28  33982  monotuz  38350  oddcomabszz  38353  binomcxplemnotnn0  39396  limclner  40679  climinf2mpt  40742  climinfmpt  40743  dvnmptdivc  40949  dvnmul  40954  salpreimagtge  41729  salpreimaltle  41730
  Copyright terms: Public domain W3C validator