Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2393. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclf | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | isseti 3456 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 228 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 3, 5 | eximii 1838 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
7 | 1, 6 | 19.36i 2223 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
9 | 7, 8 | mpg 1798 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-nf 1785 df-clel 2814 |
This theorem is referenced by: vtoclALT 3508 summolem2a 15526 prodmolem2a 15743 poimirlem24 35906 poimirlem28 35910 monotuz 41026 oddcomabszz 41029 binomcxplemnotnn0 42295 limclner 43528 climinf2mpt 43591 climinfmpt 43592 dvnmptdivc 43815 dvnmul 43820 salpreimagtge 44600 salpreimaltle 44601 |
Copyright terms: Public domain | W3C validator |