![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2403. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclf | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . 2 ⊢ 𝐴 ∈ V | |
3 | vtoclf.4 | . . 3 ⊢ 𝜑 | |
4 | vtoclf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 1, 2, 5 | vtoclef 3575 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-clel 2819 |
This theorem is referenced by: summolem2a 15763 prodmolem2a 15982 poimirlem24 37604 poimirlem28 37608 monotuz 42898 oddcomabszz 42901 binomcxplemnotnn0 44325 limclner 45572 climinf2mpt 45635 climinfmpt 45636 dvnmptdivc 45859 dvnmul 45864 salpreimagtge 46646 salpreimaltle 46647 |
Copyright terms: Public domain | W3C validator |