| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2395. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| Ref | Expression |
|---|---|
| vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
| vtoclf.2 | ⊢ 𝐴 ∈ V |
| vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclf | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtoclf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | vtoclf.4 | . . 3 ⊢ 𝜑 | |
| 4 | vtoclf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 1, 2, 5 | vtoclef 3516 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 |
| This theorem is referenced by: summolem2a 15622 prodmolem2a 15841 poimirlem24 37694 poimirlem28 37698 monotuz 43044 oddcomabszz 43047 binomcxplemnotnn0 44459 limclner 45759 climinf2mpt 45822 climinfmpt 45823 dvnmptdivc 46046 dvnmul 46051 salpreimagtge 46833 salpreimaltle 46834 |
| Copyright terms: Public domain | W3C validator |