MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3506
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2393. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3 𝑥𝜓
2 vtoclf.2 . . . . 5 𝐴 ∈ V
32isseti 3456 . . . 4 𝑥 𝑥 = 𝐴
4 vtoclf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 228 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
63, 5eximii 1838 . . 3 𝑥(𝜑𝜓)
71, 619.36i 2223 . 2 (∀𝑥𝜑𝜓)
8 vtoclf.4 . 2 𝜑
97, 8mpg 1798 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wnf 1784  wcel 2105  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-nf 1785  df-clel 2814
This theorem is referenced by:  vtoclALT  3508  summolem2a  15526  prodmolem2a  15743  poimirlem24  35906  poimirlem28  35910  monotuz  41026  oddcomabszz  41029  binomcxplemnotnn0  42295  limclner  43528  climinf2mpt  43591  climinfmpt  43592  dvnmptdivc  43815  dvnmul  43820  salpreimagtge  44600  salpreimaltle  44601
  Copyright terms: Public domain W3C validator