MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3548
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2395. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . 2 𝑥𝜓
2 vtoclf.2 . 2 𝐴 ∈ V
3 vtoclf.4 . . 3 𝜑
4 vtoclf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 232 . 2 (𝑥 = 𝐴𝜓)
61, 2, 5vtoclef 3547 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wnf 1786  wcel 2107  Vcvv 3475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787  df-clel 2811
This theorem is referenced by:  vtoclALT  3551  summolem2a  15661  prodmolem2a  15878  poimirlem24  36512  poimirlem28  36516  monotuz  41680  oddcomabszz  41683  binomcxplemnotnn0  43115  limclner  44367  climinf2mpt  44430  climinfmpt  44431  dvnmptdivc  44654  dvnmul  44659  salpreimagtge  45441  salpreimaltle  45442
  Copyright terms: Public domain W3C validator