| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2399. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| Ref | Expression |
|---|---|
| vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
| vtoclf.2 | ⊢ 𝐴 ∈ V |
| vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclf | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtoclf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | vtoclf.4 | . . 3 ⊢ 𝜑 | |
| 4 | vtoclf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 1, 2, 5 | vtoclef 3562 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Vcvv 3479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-clel 2815 |
| This theorem is referenced by: summolem2a 15752 prodmolem2a 15971 poimirlem24 37652 poimirlem28 37656 monotuz 42958 oddcomabszz 42961 binomcxplemnotnn0 44380 limclner 45671 climinf2mpt 45734 climinfmpt 45735 dvnmptdivc 45958 dvnmul 45963 salpreimagtge 46745 salpreimaltle 46746 |
| Copyright terms: Public domain | W3C validator |