MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Visualization version   GIF version

Theorem vtoclf 3517
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2395. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . 2 𝑥𝜓
2 vtoclf.2 . 2 𝐴 ∈ V
3 vtoclf.4 . . 3 𝜑
4 vtoclf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 233 . 2 (𝑥 = 𝐴𝜓)
61, 2, 5vtoclef 3516 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wnf 1784  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-clel 2806
This theorem is referenced by:  summolem2a  15622  prodmolem2a  15841  poimirlem24  37694  poimirlem28  37698  monotuz  43044  oddcomabszz  43047  binomcxplemnotnn0  44459  limclner  45759  climinf2mpt  45822  climinfmpt  45823  dvnmptdivc  46046  dvnmul  46051  salpreimagtge  46833  salpreimaltle  46834
  Copyright terms: Public domain W3C validator