| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2 | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| vtocl2.1 | ⊢ 𝐴 ∈ V |
| vtocl2.2 | ⊢ 𝐵 ∈ V |
| vtocl2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| vtocl2.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2 | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2.2 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | vtocl2.4 | . . . 4 ⊢ 𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑦 = 𝐵 → 𝜑) |
| 4 | vtocl2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 5 | vtocl2.3 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | pm5.74da 804 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 → 𝜑) ↔ (𝑦 = 𝐵 → 𝜓))) |
| 7 | 4, 6, 3 | vtocl 3558 | . . 3 ⊢ (𝑦 = 𝐵 → 𝜓) |
| 8 | 3, 7 | 2thd 265 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| 9 | 1, 8, 2 | vtocl 3558 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 |
| This theorem is referenced by: vtocl3 3567 caovord 7644 sornom 10317 wloglei 11795 ipodrsima 18586 mpfind 22131 mclsppslem 35588 monotoddzzfi 42954 |
| Copyright terms: Public domain | W3C validator |