MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclOLD Structured version   Visualization version   GIF version

Theorem vtoclOLD 3558
Description: Obsolete version of vtocl 3557 as of 20-Jun-2025. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2140. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtocl.1 𝐴 ∈ V
vtocl.2 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl.3 𝜑
Assertion
Ref Expression
vtoclOLD 𝜓
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclOLD
StepHypRef Expression
1 vtocl.3 . . 3 𝜑
2 vtocl.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2mpbii 233 . 2 (𝑥 = 𝐴𝜓)
4 vtocl.1 . . 3 𝐴 ∈ V
54isseti 3497 . 2 𝑥 𝑥 = 𝐴
63, 5exlimiiv 1930 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  Vcvv 3479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator