| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocldf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| vtocld.3 | ⊢ (𝜑 → 𝜓) |
| vtocldf.4 | ⊢ Ⅎ𝑥𝜑 |
| vtocldf.5 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| vtocldf.6 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| vtocldf | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocldf.5 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | vtocldf.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | vtocldf.4 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | vtocld.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 6 | 3, 5 | alrimi 2212 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 7 | vtocld.3 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 8 | 3, 7 | alrimi 2212 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 9 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | vtoclgft 3536 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴 ∈ 𝑉) → 𝜒) | |
| 11 | 1, 2, 6, 8, 9, 10 | syl221anc 1382 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: iota2df 6529 riotasv2d 38899 |
| Copyright terms: Public domain | W3C validator |