Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsal | Structured version Visualization version GIF version |
Description: A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 35625 first, and then deriving more specialized versions wl-equsal 35626 and wl-equsal1t 35627 then is more efficient than the other way round, which is possible, too. See also equsal 2417. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wl-equsal.1 | ⊢ Ⅎ𝑥𝜓 |
wl-equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
wl-equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | wl-equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
4 | wl-equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))) |
6 | 1, 3, 5 | wl-equsald 35625 | . 2 ⊢ (⊤ → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓)) |
7 | 6 | mptru 1546 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |