| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1914, but this proof does not use ax-5 1910.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1801 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-nf 1784 |
| This theorem is referenced by: nfsb 2522 nfmov 2554 nfmo 2556 nfeuw 2587 nfeu 2588 dvelimc 2919 nfralwOLD 3289 nfrexw 3290 nfral 3351 nfrex 3352 nfrmo 3409 nfreu 3410 nfrabw 3450 nfrabwOLD 3451 nfrab 3453 rabtru 3664 nfsbcw 3783 nfsbc 3786 nfcsbw 3896 nfcsb 3897 eqri 3975 nfdisjw 5094 nfdisj 5095 nfopab 5184 nfiotaw 6476 nfiota 6478 nfriota 7363 nfixpw 8893 nfixp 8894 esumnul 34046 hasheuni 34083 dvelimalcasei 35074 dvelimexcasei 35076 wl-cbvalnae 37518 wl-equsal 37526 limsup10ex 45744 liminf10ex 45745 liminfvalxr 45754 liminf0 45764 stowei 46035 ioosshoi 46640 vonioolem2 46652 |
| Copyright terms: Public domain | W3C validator |