| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1915, but this proof does not use ax-5 1911.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1802 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-nf 1785 |
| This theorem is referenced by: nfsb 2523 nfmov 2555 nfmo 2557 nfeuw 2588 nfeu 2589 dvelimc 2920 nfrexw 3280 nfral 3340 nfrex 3341 nfrmo 3393 nfreu 3394 nfrabw 3432 nfrab 3434 rabtru 3640 nfsbcw 3758 nfsbc 3761 nfcsbw 3871 nfcsb 3872 eqri 3950 nfdisjw 5065 nfdisj 5066 nfopab 5155 nfiotaw 6436 nfiota 6438 nfriota 7310 nfixpw 8835 nfixp 8836 esumnul 34053 hasheuni 34090 dvelimalcasei 35080 dvelimexcasei 35082 wl-cbvalnae 37567 wl-equsal 37575 limsup10ex 45811 liminf10ex 45812 liminfvalxr 45821 liminf0 45831 stowei 46102 ioosshoi 46707 vonioolem2 46719 |
| Copyright terms: Public domain | W3C validator |