Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version |
Description: The true constant has no free variables. (This can also be proven in one step with nfv 1918, but this proof does not use ax-5 1914.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nftru | ⊢ Ⅎ𝑥⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | 1 | nfth 1805 | 1 ⊢ Ⅎ𝑥⊤ |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-nf 1788 |
This theorem is referenced by: nfsb 2527 nfmov 2560 nfmo 2562 nfeuw 2593 nfeu 2594 dvelimc 2934 nfralw 3149 nfral 3150 nfrex 3237 nfrexg 3238 nfreuw 3300 nfrmow 3301 nfreu 3302 nfrmo 3303 nfrabw 3311 nfrab 3312 rabtru 3614 nfsbcw 3733 nfsbc 3736 nfcsbw 3855 nfcsb 3856 eqri 3937 nfdisjw 5047 nfdisj 5048 nfopab 5139 nfiotaw 6380 nfiota 6382 nfriota 7225 nfixpw 8662 nfixp 8663 esumnul 31916 hasheuni 31953 wl-cbvalnae 35619 wl-equsal 35626 limsup10ex 43204 liminf10ex 43205 liminfvalxr 43214 liminf0 43224 stowei 43495 ioosshoi 44097 vonioolem2 44109 |
Copyright terms: Public domain | W3C validator |