![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version |
Description: The true constant has no free variables. (This can also be proven in one step with nfv 1913, but this proof does not use ax-5 1909.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nftru | ⊢ Ⅎ𝑥⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . 2 ⊢ ⊤ | |
2 | 1 | nfth 1799 | 1 ⊢ Ⅎ𝑥⊤ |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-tru 1540 df-nf 1782 |
This theorem is referenced by: nfsb 2531 nfmov 2563 nfmo 2565 nfeuw 2596 nfeu 2597 dvelimc 2937 nfralwOLD 3318 nfrexw 3319 nfral 3382 nfrex 3383 nfreuwOLD 3433 nfrmowOLD 3434 nfrmo 3441 nfreu 3442 nfrabw 3483 nfrabwOLD 3484 nfrab 3486 rabtru 3705 nfsbcw 3826 nfsbc 3829 nfcsbw 3948 nfcsb 3949 eqri 4029 nfdisjw 5145 nfdisj 5146 nfopab 5235 nfiotaw 6529 nfiota 6531 nfriota 7417 nfixpw 8974 nfixp 8975 esumnul 34012 hasheuni 34049 dvelimalcasei 35052 dvelimexcasei 35054 wl-cbvalnae 37487 wl-equsal 37495 limsup10ex 45694 liminf10ex 45695 liminfvalxr 45704 liminf0 45714 stowei 45985 ioosshoi 46590 vonioolem2 46602 |
Copyright terms: Public domain | W3C validator |