| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1914, but this proof does not use ax-5 1910.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1801 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-nf 1784 |
| This theorem is referenced by: nfsb 2521 nfmov 2553 nfmo 2555 nfeuw 2586 nfeu 2587 dvelimc 2917 nfralwOLD 3286 nfrexw 3287 nfral 3348 nfrex 3349 nfrmo 3403 nfreu 3404 nfrabw 3443 nfrab 3445 rabtru 3656 nfsbcw 3775 nfsbc 3778 nfcsbw 3888 nfcsb 3889 eqri 3967 nfdisjw 5086 nfdisj 5087 nfopab 5176 nfiotaw 6468 nfiota 6470 nfriota 7356 nfixpw 8889 nfixp 8890 esumnul 34038 hasheuni 34075 dvelimalcasei 35066 dvelimexcasei 35068 wl-cbvalnae 37521 wl-equsal 37529 limsup10ex 45771 liminf10ex 45772 liminfvalxr 45781 liminf0 45791 stowei 46062 ioosshoi 46667 vonioolem2 46679 |
| Copyright terms: Public domain | W3C validator |