| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1914, but this proof does not use ax-5 1910.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1801 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-nf 1784 |
| This theorem is referenced by: nfsb 2527 nfmov 2559 nfmo 2561 nfeuw 2592 nfeu 2593 dvelimc 2924 nfralwOLD 3292 nfrexw 3293 nfral 3353 nfrex 3354 nfreuwOLD 3405 nfrmowOLD 3406 nfrmo 3413 nfreu 3414 nfrabw 3454 nfrabwOLD 3455 nfrab 3457 rabtru 3668 nfsbcw 3787 nfsbc 3790 nfcsbw 3900 nfcsb 3901 eqri 3979 nfdisjw 5098 nfdisj 5099 nfopab 5188 nfiotaw 6487 nfiota 6489 nfriota 7372 nfixpw 8928 nfixp 8929 esumnul 34025 hasheuni 34062 dvelimalcasei 35053 dvelimexcasei 35055 wl-cbvalnae 37497 wl-equsal 37505 limsup10ex 45750 liminf10ex 45751 liminfvalxr 45760 liminf0 45770 stowei 46041 ioosshoi 46646 vonioolem2 46658 |
| Copyright terms: Public domain | W3C validator |