| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1914, but this proof does not use ax-5 1910.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1801 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-nf 1784 |
| This theorem is referenced by: nfsb 2521 nfmov 2553 nfmo 2555 nfeuw 2586 nfeu 2587 dvelimc 2917 nfrexw 3284 nfral 3345 nfrex 3346 nfrmo 3400 nfreu 3401 nfrabw 3440 nfrab 3442 rabtru 3653 nfsbcw 3772 nfsbc 3775 nfcsbw 3885 nfcsb 3886 eqri 3964 nfdisjw 5081 nfdisj 5082 nfopab 5171 nfiotaw 6456 nfiota 6458 nfriota 7338 nfixpw 8866 nfixp 8867 esumnul 34011 hasheuni 34048 dvelimalcasei 35039 dvelimexcasei 35041 wl-cbvalnae 37494 wl-equsal 37502 limsup10ex 45744 liminf10ex 45745 liminfvalxr 45754 liminf0 45764 stowei 46035 ioosshoi 46640 vonioolem2 46652 |
| Copyright terms: Public domain | W3C validator |