| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1915, but this proof does not use ax-5 1911.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1802 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-nf 1785 |
| This theorem is referenced by: nfsb 2525 nfmov 2557 nfmo 2559 nfeuw 2590 nfeu 2591 dvelimc 2921 nfrexw 3281 nfral 3341 nfrex 3342 nfrmo 3394 nfreu 3395 nfrabw 3433 nfrab 3435 rabtru 3641 nfsbcw 3759 nfsbc 3762 nfcsbw 3872 nfcsb 3873 eqri 3951 nfdisjw 5074 nfdisj 5075 nfopab 5164 nfiotaw 6449 nfiota 6451 nfriota 7324 nfixpw 8850 nfixp 8851 esumnul 34133 hasheuni 34170 dvelimalcasei 35160 dvelimexcasei 35162 wl-cbvalnae 37650 wl-equsal 37658 limsup10ex 45933 liminf10ex 45934 liminfvalxr 45943 liminf0 45953 stowei 46224 ioosshoi 46829 vonioolem2 46841 |
| Copyright terms: Public domain | W3C validator |