MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftru Structured version   Visualization version   GIF version

Theorem nftru 1807
Description: The true constant has no free variables. (This can also be proven in one step with nfv 1918, but this proof does not use ax-5 1914.) (Contributed by Mario Carneiro, 6-Oct-2016.)
Assertion
Ref Expression
nftru 𝑥

Proof of Theorem nftru
StepHypRef Expression
1 tru 1546 . 2
21nfth 1804 1 𝑥
Colors of variables: wff setvar class
Syntax hints:  wtru 1543  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798
This theorem depends on definitions:  df-bi 206  df-tru 1545  df-nf 1787
This theorem is referenced by:  nfsb  2523  nfmov  2555  nfmo  2557  nfeuw  2588  nfeu  2589  dvelimc  2932  nfralwOLD  3310  nfrexw  3311  nfral  3371  nfrex  3372  nfreuwOLD  3423  nfrmowOLD  3424  nfrmo  3431  nfreu  3432  nfrabw  3469  nfrabwOLD  3470  nfrab  3473  rabtru  3681  nfsbcw  3800  nfsbc  3803  nfcsbw  3921  nfcsb  3922  eqri  4003  nfdisjw  5126  nfdisj  5127  nfopab  5218  nfiotaw  6500  nfiota  6502  nfriota  7378  nfixpw  8910  nfixp  8911  esumnul  33046  hasheuni  33083  wl-cbvalnae  36402  wl-equsal  36409  limsup10ex  44489  liminf10ex  44490  liminfvalxr  44499  liminf0  44509  stowei  44780  ioosshoi  45385  vonioolem2  45397
  Copyright terms: Public domain W3C validator