| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1913, but this proof does not use ax-5 1909.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1800 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1540 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 |
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-nf 1783 |
| This theorem is referenced by: nfsb 2526 nfmov 2558 nfmo 2560 nfeuw 2591 nfeu 2592 dvelimc 2923 nfralwOLD 3296 nfrexw 3297 nfral 3358 nfrex 3359 nfreuwOLD 3410 nfrmowOLD 3411 nfrmo 3418 nfreu 3419 nfrabw 3459 nfrabwOLD 3460 nfrab 3462 rabtru 3673 nfsbcw 3794 nfsbc 3797 nfcsbw 3907 nfcsb 3908 eqri 3986 nfdisjw 5104 nfdisj 5105 nfopab 5194 nfiotaw 6499 nfiota 6501 nfriota 7383 nfixpw 8939 nfixp 8940 esumnul 33990 hasheuni 34027 dvelimalcasei 35031 dvelimexcasei 35033 wl-cbvalnae 37475 wl-equsal 37483 limsup10ex 45733 liminf10ex 45734 liminfvalxr 45743 liminf0 45753 stowei 46024 ioosshoi 46629 vonioolem2 46641 |
| Copyright terms: Public domain | W3C validator |