Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version |
Description: The true constant has no free variables. (This can also be proven in one step with nfv 1918, but this proof does not use ax-5 1914.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nftru | ⊢ Ⅎ𝑥⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | 1 | nfth 1804 | 1 ⊢ Ⅎ𝑥⊤ |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-nf 1787 |
This theorem is referenced by: nfsb 2528 nfmov 2561 nfmo 2563 nfeuw 2594 nfeu 2595 dvelimc 2936 nfralwOLD 3153 nfral 3154 nfrex 3243 nfrexg 3244 nfreuwOLD 3307 nfrmowOLD 3308 nfreu 3309 nfrmo 3310 nfrabw 3319 nfrabwOLD 3320 nfrab 3321 rabtru 3622 nfsbcw 3739 nfsbc 3742 nfcsbw 3860 nfcsb 3861 eqri 3942 nfdisjw 5052 nfdisj 5053 nfopab 5144 nfiotaw 6399 nfiota 6401 nfriota 7254 nfixpw 8713 nfixp 8714 esumnul 32025 hasheuni 32062 wl-cbvalnae 35701 wl-equsal 35708 limsup10ex 43321 liminf10ex 43322 liminfvalxr 43331 liminf0 43341 stowei 43612 ioosshoi 44214 vonioolem2 44226 |
Copyright terms: Public domain | W3C validator |