| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftru | Structured version Visualization version GIF version | ||
| Description: The true constant has no free variables. (This can also be proven in one step with nfv 1914, but this proof does not use ax-5 1910.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nftru | ⊢ Ⅎ𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | nfth 1801 | 1 ⊢ Ⅎ𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-nf 1784 |
| This theorem is referenced by: nfsb 2521 nfmov 2553 nfmo 2555 nfeuw 2586 nfeu 2587 dvelimc 2917 nfrexw 3278 nfral 3339 nfrex 3340 nfrmo 3394 nfreu 3395 nfrabw 3434 nfrab 3436 rabtru 3647 nfsbcw 3766 nfsbc 3769 nfcsbw 3879 nfcsb 3880 eqri 3958 nfdisjw 5074 nfdisj 5075 nfopab 5164 nfiotaw 6446 nfiota 6448 nfriota 7322 nfixpw 8850 nfixp 8851 esumnul 34034 hasheuni 34071 dvelimalcasei 35062 dvelimexcasei 35064 wl-cbvalnae 37526 wl-equsal 37534 limsup10ex 45774 liminf10ex 45775 liminfvalxr 45784 liminf0 45794 stowei 46065 ioosshoi 46670 vonioolem2 46682 |
| Copyright terms: Public domain | W3C validator |