Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-hbae1 | Structured version Visualization version GIF version |
Description: This specialization of hbae 2429 does not depend on ax-11 2153. (Contributed by Wolf Lammen, 8-Aug-2021.) |
Ref | Expression |
---|---|
wl-hbae1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11n 2424 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | |
2 | axc11n 2424 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
3 | 2 | axc4i 2315 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦∀𝑥 𝑥 = 𝑦) |
4 | 1, 3 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |